Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1417003(2021)

Retinal Vessel Segmentation of Prematurity Infants Based on FDMU-net

Liang Wang1, Chunxiao Chen1、*, Xue Fu1, and Lin Wang2
Author Affiliations
  • 1College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211106, China
  • 2Shanghai Shengwei Medical Technology Co., Ltd., Shanghai 201321, China
  • show less
    Figures & Tables(10)
    Network architecture FDMU-net
    Dense block
    Multi-convolution kernel extraction unit
    Different models for ROC curve on each dataset. (a) DRIVE; (b) STARE; (c) Shengwei
    Comparison of different models for segmentation of small blood vessels of different models. (a) Original fundus image; (b) segmentation of U-net; (c) segmentation of FDMU-net
    Comparison of anti-interference ability of different models. (a) Original fundus image; (b) segmentation of U-net; (c) segmentation of FDMU-net
    Different models for segmentation on each dataset. (a) Fundus images of premature infants; (b) manual labeling;(c) segmentation results of Ref.[17]; (d) segmentation results of Ref.[18]; (e) segmentation results of FMDU-net
    • Table 1. Parameters of training set for each dataset

      View table

      Table 1. Parameters of training set for each dataset

      DatasetNo. of original imagesNo. of imagesOriginal sizeInput size
      DRIVE32320565×584565×584
      STARE16160605×700605×700
      Shengwei646401200×1600480×640
    • Table 2. Experimental comparison results on different datasets

      View table

      Table 2. Experimental comparison results on different datasets

      DatasetMethodAccuracySensitivitySpecificityDiceAUC
      DRIVEU-net0.96180.77090.98120.78710.9731
      DU-net0.96700.78810.98180.80430.9701
      DMU-net0.96710.81220.98190.81770.9764
      FDMU-net0.96750.81520.98260.81910.9808
      STAREU-net0.96270.82150.97550.78940.9731
      DU-net0.96780.82170.97820.79610.9757
      DMU-net0.96750.83910.97840.80030.9837
      FDMU-net0.96850.84840.97830.80110.9892
      ShengweiU-net0.96900.62030.98120.60640.9446
      DU-net0.97200.64000.98170.62320.9477
      DMU-net0.97270.65940.98330.62790.9590
      FDMU-net0.97280.66330.98400.63020.9595
    • Table 3. Performance comparison of FDMU-net and other methods

      View table

      Table 3. Performance comparison of FDMU-net and other methods

      DatasetMethodYearAccuracySensitivitySpecificityAUC
      DRIVERef. [17]20190.95460.80530.97670.9771
      Ref. [18]20200.95620.78230.98150.9793
      FDMU-net0.96750.81520.98260.9808
      STARERef. [17]20190.96840.82990.97940.9817
      Ref. [18]20200.96170.82170.97660.9854
      FDMU-net0.96850.84840.97830.9892
      ShengweiRef. [17]20190.96970.62550.98310.9447
      Ref. [18]20200.97170.63370.97860.9503
      FDMU-net0.97280.66330.98400.9595
    Tools

    Get Citation

    Copy Citation Text

    Liang Wang, Chunxiao Chen, Xue Fu, Lin Wang. Retinal Vessel Segmentation of Prematurity Infants Based on FDMU-net[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1417003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Aug. 7, 2020

    Accepted: Sep. 30, 2020

    Published Online: Jul. 14, 2021

    The Author Email: Chunxiao Chen (ccxbme@nuaa.edu.cn)

    DOI:10.3788/LOP202158.1417003

    Topics