Acta Optica Sinica, Volume. 44, Issue 13, 1314001(2024)

Thermal Noise Analysis Based on Higher-Order Mode Laser Frequency Stabilization

Lianlian Du1, Jingfang Liu1, Jiamin Liu1, Rongguo Yang2,3, Hengxin Sun1,2、*, and Jiangrui Gao1,2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, Shanxi , China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • 3College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    Figures & Tables(14)
    Noise model for laser frequency stabilization. (a) Feedback control block diagram; (b) relationship diagram between noise source and total frequency noise
    Higher-order mode frequency stabilization scheme. (a) Experimental implementation scheme; (b) control block diagram of noise transfer
    Pressure distribution maps. (a) Hermite-Gauss mode; (b) Laguerre-Gaussian mode
    Mirror thermal noise
    Thermal noise of reference cavity. (a) Frequency noise of the fundamental mode when substrate is ULE material; (b) total frequency noise of LG p,0 mode at 1 Hz when substrate is fused silica and ULE material
    Schematic diagram of mode mismatch. (a) Change waist position; (b) change waist size
    Mode mismatch coupling efficiency. (a) Change waist position; (b) change waist size
    Maximum coupling efficiency of each order of Laguerre-Gaussian mode LGp,0
    Noise curves when Pin=10 μW. (a) LG0,0; (b) LG10,0; (c) LG20,0
    Total noise of LG0,0, LG10,0, LG20,0 mode
    LGp,0 mode noise. (a) Pin=10 μW, f =10 Hz; (b) Pin=100 μW, f =1 Hz
    • Table 1. Reference cavity parameters

      View table

      Table 1. Reference cavity parameters

      MaterialPoisson ratioLoss angleYoung’s modulus /PaThickness /mm
      ULE0.181/6×10-46.8×10106.35
      Fused silica0.171×10-67.3×10106.35
      SiO2/Ta2O50.170.5×10-47.2×10102×10-3
    • Table 2. Reference cavity overall frequency thermal noise Sν,th(f) generated by mode LGp, l

      View table

      Table 2. Reference cavity overall frequency thermal noise Sν,th(f) generated by mode LGp, l

      pl
      012345
      00.09610.09430.09250.09090.08930.0877
      10.09260.09090.08940.08790.08640.0850
      20.08940.08790.08650.08510.08380.0826
      30.08650.08520.08390.08270.08150.0804
      40.08390.08270.08160.08050.07940.0784
      50.08160.08050.07950.07850.07760.0766
    • Table 3. Different modes of noise and reduction rate

      View table

      Table 3. Different modes of noise and reduction rate

      Pin /μWf /HzMinimum total noise corresponds to modeSν /(Hz/Hz1/2Reduction rate /%
      10.5LG17,00.034315.98
      1.0LG13,00.025412.17
      10.0LG0,00.00920
      100.5LG25,00.031622.55
      1.0LG25,00.022721.53
      10.0LG13,00.008012.17
      1000.5LG25,00.031223.49
      1.0LG25,00.022123.38
      10.0LG25,00.007221.53
    Tools

    Get Citation

    Copy Citation Text

    Lianlian Du, Jingfang Liu, Jiamin Liu, Rongguo Yang, Hengxin Sun, Jiangrui Gao. Thermal Noise Analysis Based on Higher-Order Mode Laser Frequency Stabilization[J]. Acta Optica Sinica, 2024, 44(13): 1314001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jan. 22, 2024

    Accepted: Mar. 7, 2024

    Published Online: Jul. 4, 2024

    The Author Email: Sun Hengxin (hxsun@sxu.edu.cn)

    DOI:10.3788/AOS240547

    Topics