Opto-Electronic Engineering, Volume. 45, Issue 3, 170489(2018)
Overview of adaptive optics development
[2] [2] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229–236.
[3] [3] Linnik V P. On the possibility of reducing the influence of atmospheric seeing on the image quality of stars[J]. Optics and Spectroscopy (in Russian), 1957, 3. English translation, 401-402. CO-16 Satellite Conference on Active and Adaptive Optics, ESO Proc. 48, 1993: 535–538.
[4] [4] Fried D. L. edited Special issue on adaptive optics[J]. JOSA, 1977, 67(3).
[5] [5] Hardy J W. Active optics: A new technology for the control of light[J]. Proceedings of the IEEE, 1978, 66(6): 651–697.
[6] [6] Special issue on adaptive optics[J]. Lincoln Laboratory Journal, 1992, 5(1): 170.
[7] [7] Fried D L. Limiting resolution looking down through the atmosphere[ J]. Journal of the Optical Society of America, 1966, 56(10): 1380–1384.
[8] [8] Greenwood D P. Bandwidth specification for adaptive optics systems[J]. Journal of the Optical Society of America, 1977, 67(3): 390–393.
[9] [9] Fried D L. Anisoplanatism in adaptive optics[J]. Journal of the Optical Society of America, 1982, 72(1): 52–61.
[10] [10] Murphy D V. Atmospheric-turbulence compensation experiments using cooperative beacons[J]. The Lincoln Laboratory Journal, 1992, 5(1): 25–44.
[11] [11] Murphy D V, Primmerman C A, Zollars B G, et al. Experimental demonstration of atmospheric compensation using multiple synthetic beacons[J]. Optics Letters, 1991, 16(22): 1797–1799.
[12] [12] Fugate R Q, Fried D L, Ameer G A, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star[J]. Nature, 1991, 353(6340): 144–146.
[13] [13] Primmerman C A, Fouche D G. Thermal-blooming compensation: experimental observations using a deformable-mirror system[J]. Applied Optics, 1976, 15(4): 990–995.
[14] [14] Schonfeld J F. The theory of compensated laser propagation through strong thermal blooming[J]. The Lincoln Laboratory Journal, 1992, 5(1): 131–150.
[15] [15] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe[J]. Astronomy and Astrophysics, 1985, 152(2): L29–L31.
[16] [16] Humphreys R A, Bradley L C, Herrmann J. Sodium-layer synthetic beacons for adaptive optics[J]. The Lincoln Laboratory Journal, 1992, 5(1): 45–66.
[17] [17] Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmospheric compensation[J]. Journal of the Optical Society of America, 1977, 67(3): 360–369.
[18] [18] Hardy J W. Adaptive Optics for Astronomical Telescopes[M]. Oxford: Oxford University Press, 1998.
[19] [19] Hardy J W. Twenty years of active and adaptive optics[C]// ICO-16 Satellite Conference on Active and Adaptive Optics, 1993, 48: 29–34.
[20] [20] Kern P, Merkle F, Gaffard J P, et al. Prototype of an adaptive optical system for astronomical observation[J]. Proceedings of SPIE, 1988, 860: 9–16.
[21] [21] Merkle F, Rousset G, Kern P Y, et al. First diffraction-limited astronomical images with adaptive optics[J]. Proceedings of SPIE, 1990, 1236: 193–203.
[22] [22] Roddier F. Curvature sensing and compensation: a new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223–1225.
[23] [23] Ellerbroek B, Britton M, Dekany R, et al. Adaptive optics for the thirty meter telescope[J]. Proceedings of SPIE, 2005, 5903: 590304.
[24] [24] Vernin J, Mu oz-Tu ón C, Sarazin M, et al. European extremely large telescope site characterization I: Overview[J]. Publications of the Astronomical Society of the Pacific, 2011, 123(909): 1334–1346.
[25] [25] GMT Project. Giant magellan telescope conceptual design review[EB/OL]. http://www.gmto.org, 2006.
[26] [26] Fugate R Q. The starfire optical range 3.5-m adaptive optical telescope[J]. Proceedings of SPIE, 2003, 4837: 934–944.
[27] [27] Acton D S, Dunn R B. Solar imaging at national solar observatory using a segmented adaptive optics system[J]. Proceedings of SPIE, 1993, 1920: 348–353.
[28] [28] Jiang W H, Zhang Y D, Rao C H, et al. Progress on adaptive optics of Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Acta Optica Sinica, 2011, 31(9): 900106.
[30] [30] Jiang W H, Li M G, Tang G M, et al. Adaptive optical image compensation experiments on stellar objects[J]. Optical Engineering, 1995, 34(1): 15–21.
[31] [31] Rao C H, Jiang W H, Zhang Y D, et al. 61-element adaptive optical system for 1.2 m telescope of Yunnan Observatory[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 295–302.
[32] [32] Rao C H, Wei K, Zhang X J, et al. First observations on the 127-element adaptive optical system for 1.8 m telescope[J]. Proceedings of SPIE, 2008, 7654: 76541H.
[33] [33] Wei K, Bo Y, Xue X H, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[J]. Proceedings of SPIE, 2012, 8447: 84471R .
[34] [34] Wei K, Li M, Chen S Q, et al. First light for the sodium laser guide star adaptive optics system on the Lijiang 1.8 m telescope[ J]. Research in Astronomy and Astrophysics, 2016, 16(12): 183.
[35] [35] Jin K, Wei K, Feng L, et al. Photon return on-sky test of pulsed sodium laser guide star with D2b repumping[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(954): 749–756.
[36] [36] Rao C H, Jiang W H, Fang C, et al. A tilt-correction adaptive optical system for the solar telescope of Nanjing University[J]. Research in Astronomy and Astrophysics, 2003, 3(6): 576–586.
[37] [37] Rao C H, Zhu L, Rao X J, et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at Fuxian solar observatory[ J]. The Astrophysical Journal, 2016, 833(2): 210.
[38] [38] Liu C, Chen M, Chen S Q, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 2016, 361: 21–24.
[41] [41] Jiang W H, Huang S F, Ling N, et al. Hill-climbing wavefront correction system for large laser engineering[J]. Proceedings of SPIE, 1989, 965: 266–273.
[42] [42] Salmon J T, Bliss E S, Byrd J L, et al. An adaptive optics system for solid-state laser systems used in inertial confinement fusion[ R]. Monterey, CA: Office of Scientific & Technical Information Technical Reports LLNL, 1995.
[43] [43] Liang J Z, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A, 1997, 14(11): 2884–2892.
[44] [44] Roorda A, Williams D R. The arrangement of the three cone classes in the living human eye[J]. Nature, 1999, 397(6719): 520–522.
[45] [45] Ling N, Zhang Y D, Rao X J, et al. A small adaptive optical imaging system for cells of living human retina[J]. Acta Optica Sinica, 2004, 24(9): 1153–1158.
[46] [46] Shi G H, Dai Y, Wang L, et al. Adaptive optics optical coherence tomography for retina imaging [J]. Chinese Optic Letters, 2008, 6(6): 424–425.
[47] [47] He Y, Zhang Y D, Lu J, et al. Superresolution in adaptive optics confocal scanning laser ophthalmoscope[J]. Acta Physica Sinica, 2011, 60(3): 034207.
[48] [48] Liu R, Zhou J W, Zhao H X, et al. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction[J]. Scientific Reports, 2014, 4: 4687.
[49] [49] Macintosh B A, Graham J R, Palmer D W, et al. The Gemini Planet Imager: from science to design to construction[J]. Proceedings of SPIE, 2008, 7015: 701518.
[50] [50] Beuzit J L, Feldt M, Dohlen K, et al. A 'Planet Finder' instrument for the VLT[J]. Proceedings of the International Astronomical Union, 2005, 1(C200): 317–322.
[51] [51] Fusco T, Sauvage J F, Petit C, et al. Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results[J]. Proceedings of SPIE, 2014, 9148: 91481U.
[52] [52] Macintosh B, Graham J R, Ingraham P, et al. First light of the Gemini Planet imager[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12661–12666.
[53] [53] Ning Y, Jiang W H, Ling N, et al. Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors[J]. Optics Express, 2007, 15(19): 12030–12038.
[54] [54] Bifano T G, Perreault J A, Bierden P A. Micromachined deformable mirror for optical wavefront compensation[J]. Proceedings of SPIE, 2000, 4124: 7–15.
[55] [55] Rooms F, Camet S, Charton J, et al. A new deformable mirror and experimental setup for free-space optical communication[J]. Proceedings of SPIE, 2009, 7199: 71990.
[56] [56] Love G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Applied Optics, 1997, 36(7): 1517–1524.
[57] [57] Cai D M, Yao J, JiangW H. Performance of liquid-crystal spatial light modulator using for wave-front correction[J]. Acta Optica Sinica, 2009, 29(2): 285–291.
[58] [58] Guo Y M, Zhang A A, Fan X L, et al. First on-sky demonstration of the piezoelectric adaptive secondary mirror[J]. Optics Letters, 2016, 41(24): 5712–5715.
[59] [59] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907–909.
[60] [60] Yang H Z, Li X Y, Jiang W H. High resolution imaging of phase-distorted extended object using SPGD algorithm and deformable mirror[J]. Proceedings of SPIE, 2007, 6834: 683411.
[61] [61] Booth M J, Neil M A, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 5788–5792.
[62] [62] Wang J X, Bai F Z, Ning Y, et al. Wavefront response matrix for closed-loop adaptive optics system based on non-modulation pyramid wavefront sensor[J]. Optics Communications, 2012, 285(12): 2814–2820.
Get Citation
Copy Citation Text
Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489
Category:
Received: Oct. 11, 2017
Accepted: --
Published Online: May. 3, 2018
The Author Email: Wenhan Jiang (adopse@ioe.ac.cn)