Laser & Optoelectronics Progress, Volume. 62, Issue 9, 0916003(2025)

Machine Learning-Assisted Optimization of Process Parameters for Perovskite Solar Cell Fabrication

Yin Gao, Yang Li*, Chuanglin Xia, and Qian Chen
Author Affiliations
  • School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, Guangdong , China
  • show less
    Figures & Tables(8)
    Perovskite solar cell efficiency predict model
    Scatter plot of perovskite solar cell efficiency prediction by different models. (a) LR; (b) SVR; (c) RF; (d) XGBoost; (e) Adaboost; (f) PCEPM
    Feature importance analysis. (a) Feature importance scatter; (b) feature importance ranking
    Comparison of experimental and predicted photovoltaic conversion efficiency of perovskite solar cell devices under different experimental conditions. (a) Structure of perovskite solar cell devices; (b) power conversion efficiency under different laboratory conditions
    Performance testing. (a) IV testing; (b) EQE testing; (c) XRD testing; (d) PL testing; (e) UV-Vis testing
    SEM maps at different magnifications. (a) 1 μm; (b) 500 nm; (c) 200 nm; (d) 100 nm
    • Table 1. Process parameters in the preparation of perovskite solar cells

      View table

      Table 1. Process parameters in the preparation of perovskite solar cells

      NumberFeature nameParameter space
      1NMP (N-Methylpyrrolidone) /(μL/mL)0,30
      2CY (Cyrene) /(μL/mL)0,30
      3THF (2-Methyltetrahydrofuran) /(μL/mL)0,10,15,20,26,28,30,32
      4CHP (N-Cyclohexyl-2-pyrrolidone) /(μL/mL)0,30
      5DMSO (Dimethyl sulfoxide) /(μL/mL)47,63,84,93,115,125,140,165,180,200,215
      6TMSO(Tetramethylene sulfoxide) /(μL/mL)0,15,31,57,65,78,93
      7DMF(N,N-Dimethylformamide) /(μL/mL)830,865,890,905
      8RbI (Rubidium iodide)∶CsI (Cesium iodide)0.889,0.911,0.956,1
      9PurificationPEAICl,PMA4
      10Ammonium ion /(μL/mL)0,1,2,3
      11Annealing methodConventional,solvent atmosphere
      12Annealing time ratio0.167,0.333,0.5,1
      13Light intensity /lx0,110
    • Table 2. Comparison of prediction performance of different models on the training and testing datasets

      View table

      Table 2. Comparison of prediction performance of different models on the training and testing datasets

      ModelTraining datasetTesting dataset
      RMSEMAER2RMSEMAER2
      LR1.1580.7290.4130.9930.7640.585
      SVR-RBF1.0790.5640.4900.7880.5520.738
      RF0.4980.2470.8910.6360.4780.830
      XGBoost0.1660.1260.9880.6520.4810.821
      AdaBoost0.2270.2010.9770.6690.5050.812
      PCEPM0.2500.1880.9730.6200.4690.838
    Tools

    Get Citation

    Copy Citation Text

    Yin Gao, Yang Li, Chuanglin Xia, Qian Chen. Machine Learning-Assisted Optimization of Process Parameters for Perovskite Solar Cell Fabrication[J]. Laser & Optoelectronics Progress, 2025, 62(9): 0916003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Dec. 20, 2024

    Accepted: Feb. 7, 2025

    Published Online: May. 9, 2025

    The Author Email: Yang Li (insidesun51@163.com)

    DOI:10.3788/LOP242462

    CSTR:32186.14.LOP242462

    Topics