Laser & Optoelectronics Progress, Volume. 62, Issue 9, 0916003(2025)
Machine Learning-Assisted Optimization of Process Parameters for Perovskite Solar Cell Fabrication
Fig. 2. Scatter plot of perovskite solar cell efficiency prediction by different models. (a) LR; (b) SVR; (c) RF; (d) XGBoost; (e) Adaboost; (f) PCEPM
Fig. 3. Feature importance analysis. (a) Feature importance scatter; (b) feature importance ranking
Fig. 4. Comparison of experimental and predicted photovoltaic conversion efficiency of perovskite solar cell devices under different experimental conditions. (a) Structure of perovskite solar cell devices; (b) power conversion efficiency under different laboratory conditions
Fig. 5. Performance testing. (a) IV testing; (b) EQE testing; (c) XRD testing; (d) PL testing; (e) UV-Vis testing
Fig. 6. SEM maps at different magnifications. (a) 1 μm; (b) 500 nm; (c) 200 nm; (d) 100 nm
|
|
Get Citation
Copy Citation Text
Yin Gao, Yang Li, Chuanglin Xia, Qian Chen. Machine Learning-Assisted Optimization of Process Parameters for Perovskite Solar Cell Fabrication[J]. Laser & Optoelectronics Progress, 2025, 62(9): 0916003
Category: Materials
Received: Dec. 20, 2024
Accepted: Feb. 7, 2025
Published Online: May. 9, 2025
The Author Email: Yang Li (insidesun51@163.com)
CSTR:32186.14.LOP242462