Chinese Journal of Lasers, Volume. 49, Issue 2, 0202010(2022)

Effect of Laser Shock Peening on Surface Modification and Tribological Properties of Ti6Al4V Titanium Alloy Bone Plates

Jinkun Li, Shouren Wang*, Gaoqi Wang, Xuefeng Yang, and Liying Yang
Author Affiliations
  • School of Mechanical Engineering, University of Jinan, Jinan, Shandong 250022, China
  • show less
    References(22)

    [1] Sun Q, Li F, Wu L et al. Comparison of the effects of bone splint external fixation and surgical internal fixation in the treatment of senile osteoporotic distal radius fractures[J]. Journal of Medical Information, 34, 128-130(2021).

    [2] Voggenreiter G, Leiting S, Brauer H et al. Immuno-inflammatory tissue reaction to stainless-steel and titanium plates used for internal fixation of long bones[J]. Biomaterials, 24, 247-254(2003).

    [3] Guo J M, Liang J L, Shen H T et al. Preparation methods and application progress of biomedical titanium alloy materials[J]. Hot Working Technology, 50, 30-34(2021).

    [4] Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti[J]. Acta Biomaterialia, 3, 573-585(2007).

    [5] Sul Y T. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant[J]. Biomaterials, 24, 3893-3907(2003).

    [6] Yang X Y, Hutchinson C R. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid[J]. Acta Biomaterialia, 42, 429-439(2016).

    [7] Fleck C, Eifler D. Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys[J]. International Journal of Fatigue, 32, 929-935(2010).

    [8] Att W, Hori N, Takeuchi M et al. Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials[J]. Biomaterials, 30, 5352-5363(2009).

    [9] Besinis A, Hadi S D, Le H R et al. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings[J]. Nanotoxicology, 11, 327-338(2017).

    [10] Patel S S, Aruni W, Inceoglu S et al. A comparison of Staphylococcus aureus biofilm formation on cobalt-chrome and titanium-alloy spinal implants[J]. Journal of Clinical Neuroscience, 31, 219-223(2016).

    [11] Fan X P, Feng B, Liu Z Y et al. Fabrication of TiO2 nanotubes on porous titanium scaffold and biocompatibility evaluation in vitro and in vivo[J]. Journal of Biomedical Materials Research Part A, 100, 3422-3427(2012).

    [12] Bjursten L M, Rasmusson L, Oh S et al. Titanium dioxide nanotubes enhance bone bonding in vivo[J]. Journal of Biomedical Materials Research Part A, 92, 1218-1224(2010).

    [13] Crawford G A, Chawla N, Das K et al. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate[J]. Acta Biomaterialia, 3, 359-367(2007).

    [14] Wang Y, Li C L, Yang H et al. The growth of anti-friction and wear-resistance TiO2 nanotube arrays driven by residual stress[J]. Tribology International, 154, 106736(2021).

    [15] Sun R J, Zhu Y, Li L H et al. Effect of laser shock peening on microstructure and residual stress of wire-arc additive manufactured 2319 aluminum alloy[J]. Laser & Optoelectronics Progress, 55, 011413(2018).

    [16] Liu Y P, Shi Z J, Zhao Y Z et al. Cut-off value of detail fatigue rated strength of TC4 titanium alloy with compound strengthening treatment by laser shock peening and shot peening[J]. Chinese Journal of Lasers, 47, 0502006(2020).

    [17] Wang H, Huang Y H, Zhang W W et al. Experimental study of tensile and wear resistance properties of ZK60 magnesium alloy treated by laser shock peening[J]. Laser & Optoelectronics Progress, 53, 101406(2016).

    [18] Dai F Z, Geng J, Tan W S et al. Friction and wear on laser textured Ti6Al4V surface subjected to laser shock peening with contacting foil[J]. Optics & Laser Technology, 103, 142-150(2018).

    [19] Zhou J Z, Sun Y J, Huang S et al. Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy[J]. Optics & Laser Technology, 109, 263-269(2019).

    [20] Wu S X, Wang S R, Liu W T et al. Microstructure and properties of TiO2 nanotube coatings on bone plate surface fabrication by anodic oxidation[J]. Surface and Coatings Technology, 374, 362-373(2019).

    [21] Sarkar A, Kietzig A M. General equation of wettability: a tool to calculate the contact angle for a rough surface[J]. Chemical Physics Letters, 574, 106-111(2013).

    [22] Alfarsi M A, Hamlet S M, Ivanovski S. Titanium surface hydrophilicity enhances platelet activation[J]. Dental Materials Journal, 33, 749-756(2014).

    Tools

    Get Citation

    Copy Citation Text

    Jinkun Li, Shouren Wang, Gaoqi Wang, Xuefeng Yang, Liying Yang. Effect of Laser Shock Peening on Surface Modification and Tribological Properties of Ti6Al4V Titanium Alloy Bone Plates[J]. Chinese Journal of Lasers, 2022, 49(2): 0202010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Jun. 8, 2021

    Accepted: Jul. 9, 2021

    Published Online: Dec. 1, 2021

    The Author Email: Shouren Wang (me_wangsr@ujn.edu.cn)

    DOI:10.3788/CJL202249.0202010

    Topics