Optics and Precision Engineering, Volume. 31, Issue 18, 2675(2023)
Full leaf-spring type spatial large-stroke parallel flexure micro-positioning stage and trajectory control
[1] TEO T J, YANG G, CHEN I M. A large deflection and high payload flexure-based parallel manipulator for UV nanoimprint lithography: part I. Modeling and analyses[J]. Precision Engineering, 38, 861-871(2014).
[2] ZAREINEJAD M, REZAEI S M, ABDULLAH A et al. Development of a piezo-actuated micro-teleoperation system for cell manipulation[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 5, 66-76(2009).
[3] XIAO R, XU M, SHAO S et al. Design and wide-bandwidth control of large aperture fast steering mirror with integrated-sensing unit[J]. Mechanical Systems and Signal Processing, 126, 211-226(2019).
[4] WANG Y. Design and control of an ultraprecision stage used in grating tiling[J]. Chinese Journal of Mechanical Engineering (English Edition), 20, 1(2007).
[5] YE W, LI Q C. Type synthesis of lower mobility parallel mechanisms: a review[J]. Chinese Journal of Mechanical Engineering, 32, 1-11(2019).
[6] [6] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13): 53-68. doi: 10.3901/jme.2015.13.053YUJ J, HAOG B, CHENG M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68.(in Chinese). doi: 10.3901/jme.2015.13.053
[7] LIU Y X, DENG J, SU Q. Review on multi-degree-of-freedom piezoelectric motion stage[J]. IEEE Access, 6, 59986-60004(2018).
[8] LI H, TANG H, LI J et al. Design, fabrication, and testing of a 3-DOF piezo fast tool servo for microstructure machining[J]. Precision Engineering, 72, 756-768(2021).
[9] ZHAO Y, YUE H, YANG F et al. A high thrust density voice coil actuator with a new structure of double magnetic circuits for CubeSat deployers[J]. IEEE Transactions on Industrial Electronics, 69, 13305-13315(2022).
[10] AL-JODAH A, SHIRINZADEH B, GHAFARIAN M et al. Development and control of a large range XYΘ micropositioning stage[J]. Mechatronics, 66, 102343(2020).
[11] ZHANG X, XU Q. Design, fabrication and testing of a novel symmetrical 3-DOF large-stroke parallel micro/nano-positioning stage[J]. Robotics and Computer-Integrated Manufacturing, 54, 162-172(2018).
[12] AWTAR S, QUINT J, USTICK J. Experimental characterization of a large-range parallel kinematic XYZ flexure mechanism[J]. Journal of Mechanisms and Robotics, 13(2021).
[13] [13] 徐洪业, 李杨民, 李祥春. 空间3-DOF柔性并联微动平台运动学分析[J]. 制造业自动化, 2018, 40(3):23-26. doi: 10.3969/j.issn.1009-0134.2018.03.007XUH Y, LIY M, LIX C. Kinematics analysis of space 3-DOF flexicle parallel micro-manipulator platform[J]. Manufacturing Automation, 2018, 40(3):23-26.(in Chinese). doi: 10.3969/j.issn.1009-0134.2018.03.007
[14] WANG R Z, WU H. Design and performance of a spatial 6-RRRR compliant parallel nanopositioning stage[J]. Micromachines, 13, 1889(2022).
[15] YANG B, ZHANG C, YU H T et al. Design and Analysis of a 3-DOF Planar Flexure-Based Parallel Mechanism with Large Motion Range[C], 1888-1893(12).
[16] KANG S, LEE M G, CHOI Y M. Six degrees-of-freedom direct-driven nanopositioning stage using crab-leg flexures[J]. IEEE/ASME Transactions on Mechatronics, 25, 513-525(2020).
[17] YANG Z, LEE R, HOPKINS JB. Hexblade positioner: a fast large-range six-axis motion stage[J]. Precision Engineering, 76, 199-207(2022).
[18] [18] 蒋毅, 朱煜, 杨开明, 等. 超精密六自由度微动台耦合动力学建模及分析[J]. 中国电机工程学报, 2014, 34(30): 5451-5457. doi: 10.13334/j.0258-8013.pcsee.2014.30.024JIANGY, ZHUY, YANGK M, et al. Coupled dynamic modeling and analysis of ultra-precision 6-DOF fine stage[J]. Proceedings of the CSEE, 2014, 34(30): 5451-5457.(in Chinese). doi: 10.13334/j.0258-8013.pcsee.2014.30.024
[19] [19] 于阳, 王学问, 徐振邦, 等. 基于柔性铰链的大口径望远镜并联调整机构[J]. 光学 精密工程, 2023, 31(3):352-362. doi: 10.37188/OPE.20233103.0352YUY, WANGX W, XUZ B, et al. Parallel adjustment mechanism for large aperture telescope based on flexible hinges[J]. Opt. Precision Eng., 2023, 31(3):352-362.(in Chinese). doi: 10.37188/OPE.20233103.0352
[20] [20] 徐骁. 三自由度纳米定位平台设计与控制[D]. 上海: 上海交通大学, 2016.XUX. Design and Control of 3-DOF Nanopositioning Stage[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
[21] AL-JODAH A, SHIRINZADEH B, GHAFARIAN M et al. Modeling and a cross-coupling compensation control methodology of a large range 3-DOF micropositioner with low parasitic motions[J]. Mechanism and Machine Theory, 162, 104334(2021).
[22] [22] 张旭, 赖磊捷, 李朋志, 等. 电磁驱动柔顺微定位平台闭环频域逆迭代学习控制[J]. 光学 精密工程, 2021, 29(9): 2149-2157. doi: 10.37188/OPE.20212909.2149ZHANGX, LAIL J, LIP Z, et al. Closed-loop inverse iterative learning control in frequency-domain for electromagnetic driven compliant micro-positioning platform[J]. Opt. Precision Eng., 2021, 29(9): 2149-2157.(in Chinese). doi: 10.37188/OPE.20212909.2149
Get Citation
Copy Citation Text
Yunzhuang CHEN, Leijie LAI, Pengzhi LI, Limin ZHU. Full leaf-spring type spatial large-stroke parallel flexure micro-positioning stage and trajectory control[J]. Optics and Precision Engineering, 2023, 31(18): 2675
Category: Micro/Nano Technology and Fine Mechanics
Received: Mar. 3, 2023
Accepted: --
Published Online: Oct. 12, 2023
The Author Email: