Journal of Synthetic Crystals, Volume. 50, Issue 10, 1830(2021)

Research Progress on the Melt-Grown Inorganic Perovskite Semiconductor Single Crystals and Devices for Nuclear Radiation Detection

QIN Haoming*, SHEN Nannan, and HE Yihui
Author Affiliations
  • [in Chinese]
  • show less
    References(67)

    [3] [3] SORENSON J A, PHELPS M E, BROWNELL G L. Physics in nuclear medicine[J]. Physics Today, 1982, 35(5): 85.

    [4] [4] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902.

    [5] [5] LI G Q, JIE W Q, HUA H, et al. Cd1-xZnxTe: Growth and characterization of crystals for X-ray and gamma-ray detectors[J]. Progress in Crystal Growth and Characterization of Materials, 2003, 46(3): 85-104.

    [6] [6] BUTLER J F, LINGREN C L, DOTY F P. Cd1-x/ZnxTe gamma ray detectors[J]. IEEE Transactions on Nuclear Science, 1992, 39(4): 605-609.

    [7] [7] ROSE G. De novis quibusdam fossilibus quae in montibus uraliis inveniuntur[M]. AG Schadii, 1839.

    [8] [8] YE H Y, TANG Y Y, LI P F, et al. Metal-free three-dimensional perovskite ferroelectrics[J]. Science, 2018, 361(6398): 151-155.

    [9] [9] ZHENG T, WU J G, XIAO D Q, et al. Recent development in lead-free perovskite piezoelectric bulk materials[J]. Progress in Materials Science, 2018, 98: 552-624.

    [10] [10] DONG H, ZHANG C, LIU X, et al. Materials chemistry and engineering in metal halide perovskite lasers[J]. Chemical Society Reviews, 2020, 49(3): 951-982.

    [11] [11] PARK N G. Perovskite solar cells: an emerging photovoltaic technology[J]. Materials Today, 2015, 18(2): 65-72.

    [12] [12] LEE Y, KWON J, HWANG E, et al. High-performance perovskite-graphene hybrid photodetector[J]. Advanced Materials, 2015, 27(1): 41-46.

    [13] [13] STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal Growth & Design, 2013, 13(7): 2722-2727.

    [14] [14] KAKAVELAKIS G, GEDDA M, PANAGIOTOPOULOS A, et al. Metal halide perovskites for high-energy radiation detection[J]. Advanced Science, 2020, 7(22): 2002098.

    [15] [15] WEI H, HUANG J. Halide lead perovskites for ionizing radiation detection[J]. Nat Commun, 2019, 10(1): 1066.

    [16] [16] WU H D, GE Y S, NIU G D, et al. Metal halide perovskites for X-ray detection and imaging[J]. Matter, 2021, 4(1): 144-163.

    [17] [17] KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3[J]. The Journal of Physical Chemistry Letters, 2017, 8(2): 489-493.

    [18] [18] YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9(7): 444-449.

    [19] [19] HE Y H, KE W J, ALEXANDER G C B, et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals[J]. ACS Photonics, 2018, 5(10): 4132-4138.

    [20] [20] LIANG J, WANG C X, WANG Y R, et al. All-inorganic perovskite solar cells[J]. Journal of the American Chemical Society, 2016, 138(49): 15829-15832.

    [24] [24] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485.

    [25] [25] ZHAO Y, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chemical Society Reviews, 2016, 45(3): 655-689.

    [26] [26] KIESLICH G, SUN S, CHEETHAM A K. An extended tolerance factor approach for organic-inorganic perovskites[J]. Chemical Science, 2015, 6(6): 3430-3433.

    [27] [27] AMAT A, MOSCONI E, RONCA E, et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting[J]. Nano Letters, 2014, 14(6): 3608-3616.

    [28] [28] ZHANG F, LU H P, TONG J H, et al. Advances in two-dimensional organic-inorganic hybrid perovskites[J]. Energy & Environmental Science, 2020, 13(4): 1154-1186.

    [29] [29] KIM B, SEOK S I. Molecular aspects of organic cations affecting the humidity stability of perovskites[J]. Energy & Environmental Science, 2020, 13(3): 805-820.

    [30] [30] LIAO J F, RAO H S, CHEN B X, et al. Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(5): 2066-2072.

    [31] [31] WANG Y G, ZHANG H, ZHU J L, et al. Antiperovskites with exceptional functionalities[J]. Advanced Materials, 2020, 32(7): 1905007.

    [32] [32] ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids[J]. Materials Science and Engineering: R: Reports, 2019, 137: 38-65.

    [33] [33] MLLER C K. Crystal structure and photoconductivity of csium plumbohalides[J]. Nature, 1958, 182(4647): 1436.

    [34] [34] LI J, YU Q, HE Y, et al. Cs2PbI2Cl2, all-inorganic two-dimensional ruddlesden-popper mixed halide perovskite with optoelectronic response[J]. Journal of the American Chemical Society, 2018, 140(35): 11085-11090.

    [35] [35] HE Y H, STOUMPOS C C, HADAR I, et al. Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor[J]. Journal of the American Chemical Society, 2021, 143(4): 2068-2077.

    [36] [36] LIN W W, HE J G, MCCALL K M, et al. Inorganic halide perovskitoid TlPbI3 for ionizing radiation detection[J]. Advanced Functional Materials, 2021, 31(13): 2006635.

    [37] [37] SUN Q H, XU Y D, ZHANG H J, et al. Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection[J]. Journal of Materials Chemistry A, 2018, 6(46): 23388-23395.

    [38] [38] MCCALL K M, STOUMPOS C C, KOSTINA S S, et al. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A=Cs, Rb; M=Bi, Sb)[J]. Chemistry of Materials, 2017, 29(9): 4129-4145.

    [39] [39] LI X, DU X Y, ZHANG P, et al. Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection[J]. Science China Materials, 2021, 64(6): 1427-1436.

    [40] [40] MCCALL K M, STOUMPOS C C, KONTSEVOI O Y, et al. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: dimensional expansion induces a direct band gap but enhances electron-phonon coupling[J]. Chemistry of Materials, 2019, 31(7): 2644-2650.

    [41] [41] XIAO B, WANG F B, XU M, et al. Melt-grown large-sized Cs2TeI6 crystals for X-ray detection[J]. CrystEngComm, 2020, 22(31): 5130-5136.

    [42] [42] LIN W W, STOUMPOS C C, LIU Z F, et al. TlSn2I5, a robust halide antiperovskite semiconductor for γ-ray detection at room temperature[J]. ACS Photonics, 2017, 4(7): 1805-1813.

    [43] [43] LI H, MENG F, MALLIAKAS C D, et al. Mercury chalcohalide semiconductor Hg3Se2Br2 for hard radiation detection[J]. Crystal Growth & Design, 2016, 16(11): 6446-6453.

    [44] [44] SONG J Z, CUI Q Z, LI J H, et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors[J]. Advanced Optical Materials, 2017, 5(12): 1700157.

    [45] [45] ZHANG M Z, ZHENG Z P, FU Q Y, et al. Growth and characterization of all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals[J]. CrystEngComm, 2017, 19(45): 6797-6803.

    [46] [46] XU J Y, LIANG X X, JIN M, et al. Growth and characterization of all-inorganic perovskite CsPbBr3 crystal by a traveling zone melting method[J]. Journal of Inorganic Materials, 2018, 33(11): 1253.

    [47] [47] ZHANG P, ZHANG G, LIU L, et al. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 5040-5046.

    [48] [48] ZHANG P, SUN Q H, XU Y D, et al. Enhancing carrier transport properties of melt-grown CsPbBr3 single crystals by eliminating inclusions[J]. Crystal Growth & Design, 2020, 20(4): 2424-2431.

    [49] [49] HE Y H, LIU Z F, MCCALL K M, et al. Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922: 217-221.

    [50] [50] MCCALL K M, FRIEDRICH D, CHICA D G, et al. Perovskites with a twist: strong In1+ off-centering in the mixed-valent CsInX3 (X=Cl, Br)[J]. Chemistry of Materials, 2019, 31(22): 9554-9566.

    [51] [51] LI J W, STOUMPOS C C, TRIMARCHI G G, et al. Air-stable direct bandgap perovskite semiconductors: all-inorganic tin-based heteroleptic halides AxSnClyIz (A=Cs, Rb)[J]. Chemistry of Materials, 2018, 30(14): 4847-4856.

    [52] [52] STOEGER W. The crystal structures of TlPbI3 and Tl4PbI6[J]. Zeitschrift Für Naturforschung B, 1977, 32(9): 975-981.

    [53] [53] KOCSIS M. Proposal for a new room temperature X-ray detector-thallium lead iodide[J]. IEEE Transactions on Nuclear Science, 2000, 47(6): 1945-1947.

    [54] [54] HITOMI K, ONODERA T, SHOJI T, et al. Thallium lead iodide radiation detectors[J]. IEEE Transactions on Nuclear Science, 2003, 50(4): 1039-1042.

    [55] [55] YANG G, PHAN Q V, LIU M, et al. Material defect study of thallium lead iodide (TlPbI3) crystals for radiation detector applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161516.

    [56] [56] MCCALL K M, LIU Z F, TRIMARCHI G, et al. Α-particle detection and charge transport characteristics in the A3M2I9 defect perovskites (A=Cs, Rb; M=Bi, Sb)[J]. ACS Photonics, 2018, 5(9): 3748-3762.

    [57] [57] ISHII M, KOBAYASHI M. Single crystals for radiation detectors[J]. Progress in Crystal Growth and Characterization of Materials, 1992, 23: 245-311.

    [58] [58] HANY I, YANG G, PHAN Q V, et al. Thallium lead iodide (TlPbI3) single crystal inorganic perovskite: electrical and optical characterization for gamma radiation detection[J]. Materials Science in Semiconductor Processing, 2021, 121: 105392.

    [59] [59] TAKAHASHI T, WATANABE S. Recent progress in CdTe and CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2001, 48(4): 950-959.

    [60] [60] JOHNSEN S, LIU Z F, PETERS J A, et al. Thallium Chalcohalides for X-ray and γ-ray Detection[J]. Journal of the American Chemical Society, 2011, 133(26): 10030-10033.

    [61] [61] HE Y, KONTSEVOI O Y, STOUMPOS C C, et al. Defect antiperovskite compounds Hg3Q2I2 (Q=S, Se, and Te) for room-temperature hard radiation detection[J]. Journal of the American Chemical Society, 2017, 139(23): 7939-7951.

    [62] [62] HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications, 2018, 9: 1609.

    [63] [63] HE Y H, PETRYK M, LIU Z F, et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays[J]. Nature Photonics, 2021, 15(1): 36-42.

    [64] [64] CHEN H, AWADALLA S A, HARRIS F, et al. Spectral response of THM grown CdZnTe crystals[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1567-1572.

    [65] [65] MCGREGOR D S, HERMON H. Room-temperature compound semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395(1): 101-124.

    [66] [66] JANG J, JI S, GRANDHI G K, et al. Multimodal digital X-ray scanners with synchronous mapping of tactile pressure distributions using perovskites[J]. Advanced Materials, 2021, 33(30): 2008539.

    [67] [67] OU X Y, QIN X, HUANG B L, et al. High-resolution X-ray luminescence extension imaging[J]. Nature, 2021, 590(7846): 410-415.

    [68] [68] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91.

    [69] [69] FRSTER A, BRANDSTETTER S, SCHULZE-BRIESE C. Transforming X-ray detection with hybrid photon counting detectors[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2147): 20180241.

    [70] [70] PROKESCH M, SOLDNER S A, SUNDARAM A G, et al. CdZnTe detectors operating at X-ray fluxes of 100 million photons /(mm2·s) [J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1854-1859.

    [71] [71] HE Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 463(1/2): 250-267.

    CLP Journals

    [1] YANG Jinfeng, SUN Jun, QIN Juan, LI Qinglian, SHANG Jifang, ZHANG Ling, XU Jingjun. From Mineral Gems to Photoelectric Functional Crystals——A Interpretation of Mr. Jiang Minhua’s Crystal Ode[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1541

    Tools

    Get Citation

    Copy Citation Text

    QIN Haoming, SHEN Nannan, HE Yihui. Research Progress on the Melt-Grown Inorganic Perovskite Semiconductor Single Crystals and Devices for Nuclear Radiation Detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1830

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 27, 2021

    Accepted: --

    Published Online: Dec. 6, 2021

    The Author Email: Haoming QIN (hmqin@suda.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics