Infrared and Laser Engineering, Volume. 51, Issue 3, 20220082(2022)

Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)

Yaoyuan Lei1,2, Qikai Chen1,2, Yitian Liu1,2, and Yaoguang Ma1,2
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
  • 2International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    References(131)

    [1] Li X, Huang Y, Zhang P, et al. Infrared imaging system and applications[J]. Laser & Infrared, 44, 229-234(2014).

    [2] Pan Y, Zhao Y, Zhang F. IR fingerprint spectrum and its analyzing method[J]. Modern Instruments, 1-13(2000).

    [3] Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 117, 5110-5145(2017).

    [4] Yang X, Sun Z, Low T, et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy[J]. Advanced Materials, 30, 1704896(2018).

    [5] Zhang H, Wang J, Li N. Surface-enhanced infrared absorption[J]. Scientia Sinica Physica, Mechanica & Astronomica, 49, 124204(2019).

    [6] Wang H L, You E M, Panneerselvam R, et al. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design[J]. Light:Science & Applications, 10, 161(2021).

    [7] Dong L, Yang X, Zhang C, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy[J]. Nano Letters, 17, 5768-5774(2017).

    [8] Yoo D, Mohr D A, Vidal-Codina F, et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps[J]. Nano Letters, 18, 1930-1936(2018).

    [9] Hartstein A, Kirtley J R, Tsang J C. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers[J]. Physical Review Letters, 45, 201-204(1980).

    [10] Li N, Yin H, Zhuo X, et al. Infrared-responsive colloidal silver nanorods for surface-enhanced infrared absorption[J]. Advanced Optical Materials, 6, 1800436(2018).

    [11] Cerjan B, Yang X, Nordlander P, et al. Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy[J]. ACS Photonics, 3, 354-360(2016).

    [12] Leitis A, Tseng M L, John-Herpin A, et al. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing[J]. Advanced Materials, 33, 2102232(2021).

    [13] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 349, 165-168(2015).

    [14] Wu C, Guo X, Hu H, et al. Graphene plasmon enhanced infrared spectroscopy[J]. Acta Physica Sinica, 68, 148103(2019).

    [15] Kuhner L, Hentschel M, Zschieschang U, et al. Nanoantenna-enhanced infrared spectroscopic chemical imaging[J]. ACS Sensors, 2, 655-662(2017).

    [16] Rodrigo D, Tittl A, Ait-Bouziad N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nature Communications, 9, 2160(2018).

    [17] Zhu Y, Li Z, Hao Z, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface[J]. Light:Science & Applications, 7, 67(2018).

    [18] Hoang C V, Oyama M, Saito O, et al. Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy[J]. Scientific Reports, 3, 1175(2013).

    [19] Chong X, Zhang Y, Li E, et al. Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing[J]. ACS Sensors, 3, 230-238(2018).

    [20] Hu H, Yang X, Guo X, et al. Gas identification with graphene plasmons[J]. Nature Communications, 10, 1131(2019).

    [21] Zhou H, Hui X, Li D, et al. Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases[J]. Advanced Science, 7, 2001173(2020).

    [22] Fonollosa J, Rubio R, Hartwig S, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications[J]. Sensors and Actuators B:Chemical, 132, 498-507(2008).

    [23] Soref R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics, 4, 495-497(2010).

    [24] Shen W, Xue M and Yu J. Long wave infrared fast objective with wide field of view[J]. Acta Photonica Sinica, 33, 460-463(2004).

    [25] Zhang L, Chen L, Fan Y, et al. Development of mid-infrared transmitting glasses window and applications[J]. Acta Optica Sinica, 31, 296-304(2011).

    [26] Tang B, Wang Z, Fan Y, et al. Trends and status in mid-infrared glasses[J]. Infrared and Laser Engineering, 37, 311-314(2008).

    [27] Dai S, Chen H, Li M, et al. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 41, 847-852(2012).

    [28] Huang L, Coppens Z, Hallman K, et al. Long wavelength infrared imaging under ambient thermal radiation via an all-silicon metalens[J]. Optical Materials Express, 11, 2907-2914(2021).

    [29] Zhang S, Kim M H, Aieta F, et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays[J]. Optics Express, 24, 18024-18034(2016).

    [30] Zuo H, Choi D Y, Gai X, et al. High‐efficiency all‐dielectric metalenses for mid‐infrared imaging[J]. Advanced Optical Materials, 5, 1700585(2017).

    [31] Fan Q, Liu M, Yang C, et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging[J]. Applied Physics Letters, 113, 201104(2018).

    [32] Song N, Xu N, Shan D, et al. Broadband achromatic metasurfaces for longwave infrared applications[J]. Nanomaterials, 11, 2760(2021).

    [33] Yan C, Li X, Pu M, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Applied Physics Letters, 114, 161904(2019).

    [34] Cao G, Xu H-X, Zhou L-M, et al. Infrared metasurface-enabled compact polarization nanodevices[J]. Materials Today, 50, 499-515(2021).

    [35] Yao Y, Shankar R, Kats M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters, 14, 6526-6532(2014).

    [36] Tittl A, Michel A K, Schaferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability[J]. Advanced Materials, 27, 4597-4603(2015).

    [37] Jiang S, Li J, Li J, et al. Genetic optimization of plasmonic metamaterial absorber towards dual-band infrared imaging polarimetry[J]. Optics Express, 28, 22617-22629(2020).

    [38] Yong-qian L, Yong-jun G, Lei S, et al. Polarization-dependent absorption of rectangular-block metamaterials in infrared region[J]. Optical and Precision Engineering, 22, 2998-3003(2014).

    [39] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [40] Wang Jingdong, Ye Wencheng, Zhang Weiting, et al. Design of infrared metasurfaces splitter arrays[J]. Optical and Precision Engineering, 29, 674-681(2021).

    [41] Liu Yitian, Chen Qikai, Tang Zhiyuan, et al. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 14, 831-850(2021).

    [42] Wang Yilin, Fan Qingbin, Xu Ting. Progress of advanced imaging applications based on electromagnetic metalens[J]. Infrared and Laser Engineering, 50, 20211026(2021).

    [43] Li Tianyou, Huang Lingling, Wang Yongtian. The principle and research progress of metasurfaces[J]. Chinese Optics, 10, 523-540(2017).

    [44] Yu N, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 12, 6328-6333(2012).

    [45] Safaei A, Vázquez-Guardado A, Franklin D, et al. High-efficiency broadband mid-infrared flat lens[J]. Advanced Optical Materials, 6, 1800216(2018).

    [46] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 110, 197401(2013).

    [47] Love A E H. The integration of the equations of propagation of electric waves[J]. Philosophical Transactions of the Royal Society of London. Series A, 197, 1-45(1901).

    [48] Schelkunoff S A. Some equivalence theorems of electromagnetics and their application to radiation problems[J]. The Bell System Technical Journal, 15, 92-112(1936).

    [49] Epstein A, Eleftheriades G V. Huygens’ metasurfaces via the equivalence principle: design and applications[J]. Journal of the Optical Society of America B, 33, A31-A50(2016).

    [50] Campione S, Basilio L I, Warne L K, et al. Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces[J]. Optics Express, 23, 2293-2307(2015).

    [51] Zhang L, Ding J, Zheng H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics[J]. Nature Communications, 9, 1481(2018).

    [52] Leitis A, Heßler A, Wahl S, et al. All‐dielectric programmable Huygens' metasurfaces[J]. Advanced Functional Materials, 30, 1910259(2020).

    [53] Shalaginov M Y, An S, Yang F, et al. Single-element diffraction-limited fisheye metalens[J]. Nano Letters, 20, 7429-7437(2020).

    [54] Li X, Ma X, Luo X. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 44, 255-275(2017).

    [55] Pancharatnam S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 44, 398-417(1956).

    [56] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392, 45-57(1984).

    [57] Tseng M L, Jahani Y, Leitis A, et al. Dielectric metasurfaces enabling advanced optical biosensors[J]. ACS Photonics, 8, 47-60(2021).

    [58] Tittl A, John-Herpin A, Leitis A, et al. Metasurface-based molecular biosensing aided by artificial intelligence[J]. Angewandte Chemie International Edition, 58, 14810-14822(2019).

    [59] Osawa M, Ikeda M. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms[J]. The Journal of Physical Chemistry, 95, 9914-9919(1991).

    [60] Osawa M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)[J]. Bulletin of the Chemical Society of Japan, 70, 2861-2880(1997).

    [61] Merklin G T, Griffiths P R. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films[J]. Langmuir, 13, 6159-6163(1997).

    [62] Wadayama T, Takada M, Sugiyama K, et al. Infrared absorption enhancement of C60 on silver islands: contribution of charge transfer and collective electron resonance[J]. Physical Review B, 66, 193401(2002).

    [63] Yujun Z, Shyamala Devi M, Travis H, et al. Review of mid-infrared plasmonic materials[J]. Journal of Nanophotonics, 9, 1-21(2015).

    [64] Le F, Brandl D W, Urzhumov Y A, et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption[J]. ACS Nano, 2, 707-718(2008).

    [65] Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [66] Rybin M, Kivshar Y. Supercavity lasing[J]. Nature, 541, 164-165(2017).

    [67] Rybin M V, Koshelev K L, Sadrieva Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017).

    [68] Koshelev K, Lepeshov S, Liu M, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [69] Ou K, Yu F, Li G, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Science Advances, 6, eabc0711(2020).

    [70] Fan Q, Wang Y, Liu M, et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light[J]. Optics Letters, 43, 6005-6008(2018).

    [71] Jung M, Dutta-Gupta S, Dabidian N, et al. Polarimetry using graphene-integrated anisotropic metasurfaces[J]. ACS Photonics, 5, 4283-4288(2018).

    [72] Wei J, Li Y, Wang L, et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection[J]. Nature Communications, 11, 6404(2020).

    [73] Bai J, Wang C, Chen X, et al. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection[J]. Photonics Research, 7, 1051-1060(2019).

    [74] Li X, Wang H, Xu X, et al. Mid-infrared full-Stokes polarization detection based on dielectric metasurfaces[J]. Optics Communications, 484, 126690(2021).

    [75] Chen Y, Pu S, Wang C, et al. Voltage tunable mid-wave infrared reflective varifocal metalens via an optomechanic cavity[J]. Optics Letters, 46, 1930-1933(2021).

    [76] Lewi T, Butakov N A, Evans H A, et al. Thermally reconfigurable meta-optics[J]. IEEE Photonics Journal, 11, 1-16(2019).

    [77] Pryce I M, Aydin K, Kelaita Y A, et al. Highly strained compliant optical metamaterials with large frequency tunability[J]. Nano Letters, 10, 4222-4227(2010).

    [78] Roy T, Zhang S, Jung I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 3, 021302(2018).

    [79] Reeves J B, Jayne R K, Stark T J, et al. Tunable infrared metasurface on a soft polymer scaffold[J]. Nano Letters, 18, 2802-2806(2018).

    [80] Dong W, Qiu Y, Zhou X, et al. Tunable mid‐infrared phase‐change Metasurface[J]. Advanced Optical Materials, 6, 1701346(2018).

    [81] Tian J, Li Q, Lu J, et al. Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances[J]. Optics Express, 26, 23918-23925(2018).

    [82] Alaee R, Albooyeh M, Tretyakov S, et al. Phase-change material-based nanoantennas with tunable radiation patterns[J]. Optics Letters, 41, 4099-4102(2016).

    [83] Wei M, Song Z, Deng Y, et al. Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces[J]. Materials Letters, 236, 350-353(2019).

    [84] [84] Yin X, Steinle T, Huang L, et al. Beam switching bifocal zoom lensing using active plasmonic metasurfaces [J]. Light: Science & Applications 2017, 6 (7): e17016.

    [85] Peng C, Ou K, Li G, et al. Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared[J]. Optics Express, 29, 12893-12902(2021).

    [86] Sun Y, Wang Y, Ye H, et al. Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband[J]. Optics Communications, 503, 127442(2022).

    [87] Ghosh S K, Yadav V S, Das S, et al. Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (MIR) range[J]. IEEE Transactions on Electromagnetic Compatibility, 62, 346-354(2020).

    [88] Cheng J, Fan F, Chang S. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 9, 398(2019).

    [89] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters, 17, 407-413(2017).

    [90] Shalaginov M Y, An S, Zhang Y, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 12, 1225(2021).

    [91] Qu Y, Li Q, Du K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[J]. Laser & Photonics Reviews, 11, 1700091(2017).

    [92] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of >230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 17, 3027-3034(2017).

    [93] Dabidian N, Dutta-Gupta S, Kholmanov I, et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces[J]. Nano Letters, 16, 3607-3615(2016).

    [94] Watts C M, Liu X, Padilla W J. Metamaterial electromagnetic wave absorbers[J]. Advanced Materials, 24, OP98-OP120(2012).

    [95] Zeng B, Huang Z, Singh A, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging[J]. Light:Science & Applications, 7, 51(2018).

    [96] Li F, Deng J, Zhou J, et al. HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses[J]. Scientific Reports, 10, 6372(2020).

    [97] Zhang S, Soibel A, Keo S A, et al. Solid-immersion metalenses for infrared focal plane arrays[J]. Applied Physics Letters, 113, 111104(2018).

    [98] Hou H, Zhang Y, Luo Z, et al. Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors[J]. Optics and Lasers in Engineering, 150, 106849(2022).

    [99] Akın O, Demir H V. High-efficiency low-crosstalk dielectric metasurfaces of mid-wave infrared focal plane arrays[J]. Applied Physics Letters, 110, 143106(2017).

    [100] [100] Zheludev N I, Noginov M A, Engheta N, et al. Alldielectric metasurface lenses f focal plane arrays operating in wave infrared spectrum [C]Metamaterials, Metadevices, Metasystems 2018, 2018.

    [101] Bogh C L, Muhowski A J, Montealegre D A, et al. Over three hundred percent increased light extraction from emitters at mid-infrared wavelengths using metalenses[J]. ACS Applied Electronic Materials, 2, 2638-2643(2020).

    [102] Arbabi A, Briggs R M, Horie Y, et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers[J]. Optics Express, 23, 33310-33317(2015).

    [103] Chen K, Dao T D, Ishii S, et al. Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy[J]. Advanced Functional Materials, 25, 6637-6643(2015).

    [104] Neubrech F, Pucci A, Cornelius T W, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection[J]. Physical Review Letters, 101, 157403(2008).

    [105] Abb M, Wang Y, Papasimakis N, et al. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays[J]. Nano Letters, 14, 346-352(2014).

    [106] Brown L V, Zhao K, King N, et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties[J]. Journal of the American Chemical Society, 135, 3688-3695(2013).

    [107] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 6, 7998-8006(2012).

    [108] Cubukcu E, Zhang S, Park Y-S, et al. Split ring resonator sensors for infrared detection of single molecular monolayers[J]. Applied Physics Letters, 95, 043113(2009).

    [109] Brown L V, Yang X, Zhao K, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)[J]. Nano Letters, 15, 1272-1280(2015).

    [110] Aouani H, Šípová H, Rahmani M, et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas[J]. ACS Nano, 7, 669-675(2013).

    [111] Wallace G Q, Foy H C, Rosendahl S M, et al. Dendritic plasmonics for mid-infrared spectroscopy[J]. The Journal of Physical Chemistry C, 121, 9497-9507(2017).

    [112] Wu C, Khanikaev A B, Adato R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nature Materials, 11, 69-75(2011).

    [113] Huck C, Vogt J, Sendner M, et al. Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods[J]. ACS Photonics, 2, 1489-1497(2015).

    [114] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes[J]. Nano Letters, 16, 1502-1508(2016).

    [115] Etezadi D, Warner J B t, Lashuel H A, et al. Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas[J]. ACS Sensors, 3, 1109-1117(2018).

    [116] Hui X, Yang C, Li D, et al. Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155[J]. Advanced Science, 8, 2100583(2021).

    [117] Hu H, Yang X, Zhai F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nature Communications, 7, 12334(2016).

    [118] Wenger T, Viola G, Kinaret J, et al. High-sensitivity plasmonic refractive index sensing using graphene[J]. 2 D Materials, 4, 025103(2017).

    [119] Li Z, Zhu Y, Hao Y, et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein[J]. ACS Photonics, 6, 501-509(2019).

    [120] Tittl A, Leitis A, Liu M, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).

    [121] Leitis A, Tittl A, Liu M, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 5, eaaw2871(2019).

    [122] Chen Y-S, Meng D, Ma W-Z, et al. Fingerprint detection in the mid-infrared region based on guided-mode resonance and phonon-polariton coupling of analyte[J]. Optics Express, 29, 37234-37244(2021).

    [123] Liu Z, Zhu D, Rodrigues S P, et al. Generative model for the inverse design of metasurfaces[J]. Nano Letters, 18, 6570-6576(2018).

    [124] Elsawy M M R, Lanteri S, Duvigneau R, et al. Numerical optimization methods for metasurfaces[J]. Laser & Photonics Reviews, 14, 1900445(2020).

    [125] Jin Z, Mei S, Chen S, et al. Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithm[J]. ACS Nano, 13, 821-829(2019).

    [126] Campbell S D, Sell D, Jenkins R P, et al. Review of numerical optimization techniques for meta-device design [Invited][J]. Optical Materials Express, 9, 1842(2019).

    [127] Yao K, Unni R, Zheng Y. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale[J]. Nanophotonics, 8, 339-366(2019).

    [128] Ma W, Liu Z, Kudyshev Z A, et al. Deep learning for the design of photonic structures[J]. Nature Photonics, 15, 77-90(2021).

    [129] Li J, Bao L, Jiang S, et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging[J]. Optics Express, 27, 8375-8386(2019).

    [130] Koppens F H, Chang D E, Garcia de Abajo F J. Graphene plasmonics: A platform for strong light-matter interactions[J]. Nano Letters, 11, 3370-3377(2011).

    [131] Hu Y, Li X, Wang X, et al. Progress of micro-nano fabrication technologies for optical metasurfaces[J]. Infrared and Laser Engineering, 49, 20201035(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yaoyuan Lei, Qikai Chen, Yitian Liu, Yaoguang Ma. Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220082

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Mid-infrared integrated optoelectronic technology

    Received: Jan. 10, 2022

    Accepted: Mar. 14, 2022

    Published Online: Apr. 8, 2022

    The Author Email:

    DOI:10.3788/IRLA20220082

    Topics