Acta Physica Sinica, Volume. 69, Issue 8, 080701-1(2020)

Analysis on early spatiotemporal transmission characteristics of COVID-19

Cong Wang1,2, Jie Yan2,3、*, Xu Wang4, and Min Li5
Author Affiliations
  • 1Department of Computer Science & Technology, Sichuan Police College, Luzhou 646000, China
  • 2Institute of Sichuan Police Science, Sichuan Police College, Chengdu 610200, China
  • 3Department of Road Traffic Management, Sichuan Police College, Luzhou 646000, China
  • 4School of Movie and Media, Sichuan Normal University, Chengdu 610068, China
  • 5School of Computer Science, Sichuan Normal University, Chengdu 610068, China
  • show less
    Figures & Tables(9)
    Comparing the actual cumulative number of cases and its estimations according to different: (a) Year 2019; (b) year 2020.
    Comparing the migration index of Wuhan before the spring festival with the same period of 2019: (a) Inner migration index; (b) outer migration index.
    The estimation errors of the first arrival times for each provinces.
    • Table 1.

      The cumulative number of confirmed cases in 2019.

      2019年累积发病人数

      View table
      View in Article

      Table 1.

      The cumulative number of confirmed cases in 2019.

      2019年累积发病人数

      日期人数日期人数日期人数日期人数日期人数
      12/09112/171212/212912/254712/2978
      12/11212/181412/223712/264912/3090
      12/12512/191612/234012/275912/31102
      12/15812/202512/244512/2868
    • Table 2.

      The cumulative number of confirmed cases in each time slots in 2020.

      2020年各时间段累积发病人数

      View table
      View in Article

      Table 2.

      The cumulative number of confirmed cases in each time slots in 2020.

      2020年各时间段累积发病人数

      截至时点估计发病人数实际发病人数上报CCDC人数
      软件抓取法蒙特卡罗法
      2019/12/31102491020
      2020/01/10738459738—78141
      2020/01/20616258006143—6187291
      2020/01/31326612965432633—3267711821
      2020/02/1144692691634467244730
    • Table 3. Possible values of the infection rate.

      View table
      View in Article

      Table 3. Possible values of the infection rate.

      截止日期$\beta $置信区间R2截止日期$\beta $置信区间R2
      2019/12/310.2213[0.2152, 0.2274]0.8682020/01/110.2066[0.2056, 0.2274]0.990
      2020/01/010.2171[0.2116, 0.2225]0.8782020/01/120.2063[0.2056, 0.2071]0.993
      2020/01/020.2168[0.2127, 0.2209]0.92320200/1/130.2060[0.2054, 0.2067]0.995
      2020/01/030.2159[0.2127, 0.2191]0.9492020/01/140.2059[0.2054, 0.2064]0.997
      2020/01/040.2155[0.2130, 0.2179]0.9672020/01/150.2056[0.2052, 0.2060]0.998
      2020/01/050.2138[0.2118, 0.2159]0.9732020/10/160.2058[0.2054, 0.2061]0.998
      2020/01/060.2127[0.2109, 0.2144]0.9802020/01/170.2060[0.2057, 0.2063]0.999
      2020/01/070.2109[0.2093, 0.2126]0.9802020/01/180.2064[0.2061, 0.2066]0.999
      2020/01/080.2091[0.2075, 0.2107]0.9792020/01/190.2065[0.2063, 0.2067]0.999
      2020/01/090.2080[0.2067, 0.2094]0.9842020/01/200.2066[0.2064, 0.2068]0.999
      2020/01/100.2067[0.2054, 0.2080]0.9852020/01/210.2070[0.2068, 0.2073]0.999
    • Table 4.

      Cumulative confirmed cases in key time nodes.

      重要时间节点的累积发病人数

      View table
      View in Article

      Table 4.

      Cumulative confirmed cases in key time nodes.

      重要时间节点的累积发病人数

      截至时点$\beta $
      0.22130.21590.20800.2066
      2019/12/311301169795
      2020/01/1011901001777753
      2020/01/2010870866662205964
    • Table 5.

      The Baidu inner migration index and the number of the travelers sent from Wuhan`s major railway stations.

      武汉市三大火车站发送旅客人数与迁出指数

      View table
      View in Article

      Table 5.

      The Baidu inner migration index and the number of the travelers sent from Wuhan`s major railway stations.

      武汉市三大火车站发送旅客人数与迁出指数

      日期迁徙指数人数/万日期迁徙指数人数/万日期迁徙指数人数/万
      2020/01/106.6232272020/01/2211.840329.962019/01/297.028227.2
      2020/01/117.561229.82019/01/214.571821.62019/01/307.107227.7
      2020/01/126.2165272019/01/224.689221.42019/01/317.480028.1
      2020/01/135.762024.82019/01/234.8062232019/02/018.714029.8
      2020/01/155.908726.52019/01/244.860521.72019/02/029.604331.5
      2020/01/166.002827.72019/01/267.0436272019/02/039.224729.1
      2020/01/197.4060302019/01/286.770626.8
    • Table 6.

      The arrival times of each provinces.

      省级区域的首例到达时间

      View table
      View in Article

      Table 6.

      The arrival times of each provinces.

      省级区域的首例到达时间

      省份$\beta $实际日期省份$\beta $实际日期
      0.22130.21590.20700.22130.21590.2070
      安徽01/0601/0601/0701/07辽宁01/1101/1201/1301/09
      北京01/0701/0701/0801/08*内蒙古01/1301/1401/1601/16
      福建01/0901/0901/1001/06宁夏01/1701/1801/2001/17
      甘肃01/1001/1101/1201/04青海01/1901/2101/2301/21
      广东01/0501/0501/0601/04山东01/0801/0801/0901/08
      广西01/0801/0901/0901/13山西01/0901/1001/1001/14
      贵州01/0801/0801/0901/06陕西01/0901/0901/1001/12
      海南01/1001/1101/1201/13上海01/0801/0801/0901/10
      河北01/0801/0901/0901/13四川01/0801/0801/0901/07
      河南01/0401/0401/0501/03天津01/1401/1501/1601/11
      黑龙江01/1201/1301/1401/12西藏> 01/23> 01/23> 01/2301/30
      湖南01/0501/0501/0601/05新疆01/1201/1201/1401/17
      吉林01/1501/1501/1701/14云南01/0901/1101/1001/07
      江苏01/0601/0701/0701/10浙江01/0701/0701/0801/04
      江西01/0601/0701/0701/07重庆01/0801/0801/0901/06
    Tools

    Get Citation

    Copy Citation Text

    Cong Wang, Jie Yan, Xu Wang, Min Li. Analysis on early spatiotemporal transmission characteristics of COVID-19[J]. Acta Physica Sinica, 2020, 69(8): 080701-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 25, 2020

    Accepted: --

    Published Online: Nov. 24, 2020

    The Author Email:

    DOI:10.7498/aps.69.20200285

    Topics