Journal of Quantum Optics, Volume. 28, Issue 4, 288(2022)

Measurement of the Cavity Linewidth and the Zero-expansion Temperature of a Temperature-stabilized Ultra-stable Optical Cavity Placed in Ultra-High Vacuum Chamber

LU Fei-fei1, BAI Jian-dong1,2、*, HOU Xiao-kai1, WANG Xin1, HAO Li-li1, HE Jun1,3, and WANG Jun-min1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(19)

    [1] [1] LI J, JIANG Y, YUAN Y, et al. Laser frequency instability of 2×1016 by stabilizing to 30-cm-long Fabry-Pérot cavities at 578 nm[J]. Opt Express, 2018, 26(14):18699. DOI: 10.1364/OE.26.018699.

    [2] [2] AIKAWA K, KOBAYASHI J, OASA K, et al. Narrow-linewidth light source for a coherent Raman transfer of ultracold molecules[J]. Opt Express, 2011, 19(15):14479-14486. DOI: 10.1364/OE.19.014479.

    [3] [3] ENOMOTO K, HIZAWA N, SUZUKI T, et al. Comparison of resonance frequencies of major atomic lines in 398~423 nm[J]. Appl Phys B, 2016, 122(5):126. DOI: 10.1007/s00340-016-6400-5.

    [4] [4] BAI J D, WANG J Y, HE J, et al. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity[J]. J Opt, 2017, 19(4):045501. DOI: 10.1088/2040-8986/aa5a8c.

    [5] [5] MASOUDI A A, DRSCHER S, HFNER S, et al. Noise and instability of an optical lattice clock[J]. Phys Rev A, 2015, 92(6):063814. DOI: 10.1103/PhysRevA.92.063814.

    [6] [6] WANG Y B, YIN M J, REN J, et al. Strontium optical lattice clock at the national time service center[J]. Chin Phys B, 2018, 27(2):023701. DOI: 10.1088/1674-1056/27/2/023701.

    [7] [7] LIU H, JIANG K L, WANG J Q, et al. Precise calibration of zero-crossing temperature and drift of an ultralow expansion cavity with a clock transition spectrum[J]. Chin Phys B, 2018, 27(5):053201. DOI: 10.1088/1674-1056/27/5/053201.

    [8] [8] BLOOM B J , NICHOLSON T L, WILLIAMS J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506(7486):71-75. DOI: 10.1038/nature12941.

    [9] [9] LUDLOW A D, BOYD M M, YE J, et al. Optical atomic clocks[J]. Rev Mod Phys, 2015, 87(2):637. DOI: 10.1103/RevModPhys.87.637.

    [10] [10] MADJAROV I S, COVEY J P, SHAW A L, et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms[J]. Nat Phys, 2020, 16(8):857-861. DOI: 10.1038/s41567-020-0903-z.

    [11] [11] FOX R W. Fabry-Perot temperature dependence and surface-mounted optical cavities[J]. Proc SPIE, 2008, 7099:70991R. DOI: 10.1117/12.806850.

    [12] [12] LUDLOW A D, HUANG X, NOTCUTT M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10-15[J]. Opt Let, 2007, 32(6):641-643. DOI: 10.1364/OL.32.000641.

    [13] [13] LEGERO T, KESSLER T, STERR U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors[J]. J Opt Soc Am B, 2010, 27(5):914-919. DOI: 10.1364/JOSAB.27.000914.

    [15] [15] FOX R W, SHERMAN J A, MA L S, et al. Making optical atomic clocks more stable with 10-16-level laser stabilization[J]. Nature Photonics, 2011, 5(3):158-161. DOI: 10.1038/nphoton.2010.313.

    [18] [18] HUANG S, ZHU T, CAO Z, et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope[J]. IEEE Photon Technol Lett, 2016, 28(7):759. DOI: 10.1109/LPT.2015.2513098.

    [20] [20] HERBELIN J M, MCKAY J A, KWOK M A, et al. Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method[J]. Appl Opt, 1980, 19(1):144-147. DOI: 10.1364/AO.19.000144.

    [21] [21] ZHANG J, LUO Y X, OUYANG B, et al. Design of an optical reference cavity with low thermal noise limit and flexible thermal expansion properties[J]. Eur Phys J D, 2013, 67(2):46. DOI: 10.1140/epjd/e2013-30458-2.

    [23] [23] BAI J D, LIU S, WANG J Y, et al. Single-photon Rydberg excitation and trap-loss spectroscopy of cold cesium atoms in a magneto-optical trap by using of a 319-nm ultraviolet laser system[J]. IEEE J Sel Top Quant Electr, 2019, 26(3):1-6. DOI: 10.1109/JSTQE.2019.2941483.

    [24] [24] ARIAS A, LOCHEAD G, WINTERMANTEL T M, et al. Realization of a Rydberg-dressed Ramsey interferometer and electrometer[J]. Phys Rev Lett, 2019, 122(5):053601. DOI: 10.1103/PhysRevLett.122.053601.

    Tools

    Get Citation

    Copy Citation Text

    LU Fei-fei, BAI Jian-dong, HOU Xiao-kai, WANG Xin, HAO Li-li, HE Jun, WANG Jun-min. Measurement of the Cavity Linewidth and the Zero-expansion Temperature of a Temperature-stabilized Ultra-stable Optical Cavity Placed in Ultra-High Vacuum Chamber[J]. Journal of Quantum Optics, 2022, 28(4): 288

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 8, 2022

    Accepted: --

    Published Online: Mar. 5, 2023

    The Author Email: BAI Jian-dong (jdbai@nuc.edu.cn)

    DOI:10.3788/jqo20222804.0201

    Topics