Chinese Journal of Lasers, Volume. 51, Issue 15, 1507103(2024)

Flow‐Based Model for Fluorescence Image Super‐Resolution

Junchao Fan1, MiaoYunyun1, XiuLi Bi1, Bin Xiao1、*, and Xiaoshuai Huang2
Author Affiliations
  • 1Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2Biomedical Engineering Department, Peking University, Beijing 100191, China
  • show less
    References(35)

    [28] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[C], 6840-6851(2020).

    [29] Van Den Oord A, Kalchbrenner N, Kavukcuoglu K. Pixel recurrent neural networks[C], 1747-1756(2016).

    [32] Su J N, Gan M, Chen G Y et al. Global learnable attention for single image super-resolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 8453-8465(2023).

    Tools

    Get Citation

    Copy Citation Text

    Junchao Fan, MiaoYunyun, XiuLi Bi, Bin Xiao, Xiaoshuai Huang. Flow‐Based Model for Fluorescence Image Super‐Resolution[J]. Chinese Journal of Lasers, 2024, 51(15): 1507103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Jan. 12, 2024

    Accepted: Feb. 27, 2024

    Published Online: Jul. 29, 2024

    The Author Email: Xiao Bin (xiaobin@cqupt.edu.cn)

    DOI:10.3788/CJL240491

    CSTR:32183.14.CJL240491

    Topics