Optics and Precision Engineering, Volume. 32, Issue 8, 1164(2024)

Inertial motion adaptive feedforward based base perturbation suppression for magnetic bearings

Yujie HUANG, Xiangbo XU*, Lingbo ZHENG, and Lin LI
Author Affiliations
  • School of Technology, Beijing Forestry University, Beijing100000, China
  • show less
    References(22)

    [1] [1] 韩邦成, 崔华, 汤恩琼. 基于滑模扰动观测器的磁轴承主动振动控制[J]. 光学 精密工程, 2012, 20(3): 563-570. doi: 10.3788/ope.20122003.0563HANB C, CUIH, TANGE Q. Vibration suppression of magnetic bearing based on sliding mode disturbance observer[J]. Opt. Precision Eng., 2012, 20(3): 563-570.(in Chinese). doi: 10.3788/ope.20122003.0563

    [2] [2] 吕奇超, 周一恒, 吕东元, 等. 基于自适应滤波器的磁悬浮控制力矩陀螺内转子振动抑制[J]. 导航与控制, 2021, 20(1): 70-77, 91. doi: 10.3969/j.issn.1674-5558.2021.01.007LYUQ C, ZHOUY H, LYUD Y, et al. Vibration suppression of the inner rotor of a small-sized magnetically suspended control moment gyroscope based on adaptive filter[J]. Navigation and Control, 2021, 20(1): 70-77, 91.(in Chinese). doi: 10.3969/j.issn.1674-5558.2021.01.007

    [3] [3] 徐向波, 陈劭, 张亚楠. 基于复数相移陷波的磁悬浮转子系统自平衡控制[J]. 光学 精密工程, 2016, 24(4): 764-770. doi: 10.3788/ope.20162404.00-1bXUX B, CHENS, ZHANGY N. Autobalancing control of magnetically suspended motor systems based on plural phase-shift Notch filter[J]. Opt. Precision Eng., 2016, 24(4): 764-770.(in Chinese). doi: 10.3788/ope.20162404.00-1b

    [4] BORQUE GALLEGO G, ROSSINI L, ACHTNICH T et al. Novel generalized Notch filter for harmonic vibration suppression in magnetic bearing systems[J]. IEEE Transactions on Industry Applications, 57, 6977-6987(2021).

    [5] HU H J, WEI J B, WANG H Z et al. Analysis of the Notch filter insertion position for natural frequency vibration suppression in a magnetic suspended flywheel energy storage system[J]. Actuators, 12, 22(2023).

    [6] [6] 巩磊, 祝长生. 基于变角度搜索算法的磁悬浮高速电机刚性转子系统的不平衡补偿方法[J]. 中国电机工程学报, 2021, 41(19): 6769-6778. doi: 10.13334/j.0258-8013.pcsee.201917GONGL, ZHUC S. Unbalance compensation method of an active magnetic bearings-rigid rotor system for high-speed motors based on variable angle seeking algorithm[J]. Proceedings of the CSEE, 2021, 41(19): 6769-6778.(in Chinese). doi: 10.13334/j.0258-8013.pcsee.201917

    [7] CUI P L, DU L, ZHOU X X et al. Harmonic vibration moment suppression using hybrid repetitive control for active magnetic bearing system[J]. Journal of Vibration and Control, 28, 2421-2434(2022).

    [8] ZHANG Y, ZHOU J, HAN X M et al. Adaptive odd repetitive control for magnetically suspended rotor harmonic currents suppression[J]. Journal of Vibration and Control, 29, 2077-2085(2023).

    [9] [9] 徐向波, 陈劭, 刘晋浩. 重复控制与积分正反馈组合的磁轴承低功耗控制[J]. 光学 精密工程, 2017, 25(8): 2149-2154. doi: 10.3788/ope.20172508.2149XUX B, CHENS, LIUJ H. Low power control of magnetic bearing combined by repetitive control and positive integral feedback[J]. Opt. Precision Eng., 2017, 25(8): 2149-2154.(in Chinese). doi: 10.3788/ope.20172508.2149

    [10] SAKET F Y, KEOGH P S. Force-based feedforward control of persistent synchronous rotor/touchdown bearing contact in active magnetic bearing systems[J]. Mechanical Systems and Signal Processing, 201, 110657(2023).

    [11] [11] 刘奇, 苏振中, 姜豪, 等. 基于Bang-Bang+前馈策略的磁轴承执行器失效故障容错控制[J]. 电工技术学报, 2023, 38(1): 177-189.LIUQ, SUZ Z, JIANGH, et al. Fault tolerant control of magnetic bearing actuator failure based on Bang-Bang + feedforward strategy[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 177-189.(in Chinese)

    [12] REN G P, ZHANG H T, WU Y et al. A general double-input synchronous signal processor for imbalanced vibration mitigation in AMB-rotor systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53, 3823-3832(2023).

    [13] ZHANG W W. Coupled dynamic analysis of magnetic bearing-rotor system under the influences of base motion[J]. Applied Mechanics and Materials, 109, 199-203(2011).

    [14] MATSUSHITA O, IMASHIMA T, HISANAGA Y et al. Aseismic vibration control of flexible rotors using active magnetic bearing[J]. Journal of Vibration and Acoustics, 124, 49-57(2002).

    [15] KANG M S, YOON W H. Acceleration feedforward control in active magnetic bearing system subject to base motion by filtered-X LMS algorithm[J]. IEEE Transactions on Control Systems Technology, 14, 134-140(2006).

    [16] SUN J J, ZHAO J Y, BAI J C. Gimbal angular velocity feedforward method for magnetically suspended control moment gyro with hybrid magnetic bearing[J]. Mechatronics, 84, 102804(2022).

    [17] [17] 魏彤, 房建成. 磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法研究[J]. 宇航学报, 2005, 26(1): 19-23, 38. doi: 10.3321/j.issn:1000-1328.2005.01.004WEIT, FANGJ C. Moving-gimbal effects and angular rate feedforward control in magnetically suspended rotor system of CMG[J]. Journal of Astronautics, 2005, 26(1): 19-23, 38.(in Chinese). doi: 10.3321/j.issn:1000-1328.2005.01.004

    [18] [18] 魏彤, 房建成. 磁悬浮控制力矩陀螺动框架效应的FXLMS自适应精确补偿控制方法仿真研究[J]. 宇航学报, 2006, 27(6): 1205-1210. doi: 10.3321/j.issn:1000-1328.2006.06.017WEIT, FANGJ C. Accurate compensation of moving-gimbal effects based on FXLMS algorithm in magnetically suspended control moment gyroscope[J]. Journal of Astronautics, 2006, 27(6): 1205-1210.(in Chinese). doi: 10.3321/j.issn:1000-1328.2006.06.017

    [19] SUN J J, ZHAO J Y. Low power control for magnetically suspended control moment gyro based on current adaptive adjustment-gimbal angular velocity feedforward method[J]. IET Electric Power Applications, 16, 1317-1329(2022).

    [20] [20] 王舒, 郑世强. 基于复合控制的磁悬浮CMG动框架效应抑制[J]. 北京航空航天大学学报, 2020, 46(12): 2339-2347. doi: 10.13700/j.bh.1001-5965.2019.0610WANGS, ZHENGS Q. Composite control method for gimbal excitation effect suppression of magnetically suspended CMGs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2339-2347.(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0610

    [21] BLANKE M, SCHRÖDER J[M]. Diagnosis and Fault-Tolerant Control(2006).

    [22] LIU Q, LI H, PENG C et al. Vibration feedforward compensation for magnetically suspended control and sensitive gyroscope with spherical rotor[J]. Shock and Vibration, 2020, 5780567(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yujie HUANG, Xiangbo XU, Lingbo ZHENG, Lin LI. Inertial motion adaptive feedforward based base perturbation suppression for magnetic bearings[J]. Optics and Precision Engineering, 2024, 32(8): 1164

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 27, 2023

    Accepted: --

    Published Online: May. 29, 2024

    The Author Email: Xiangbo XU (xuxiangbo@bjfu.edu.cn)

    DOI:10.37188/OPE.20243208.1164

    Topics