The Journal of Light Scattering, Volume. 36, Issue 4, 375(2024)
Research progress in Raman spectroscopy of bloodfor species identification
[4] [4] Achetib N, Falkena K, Swayambhu M, et al. Specific fluorescent signatures for body fluid identification using fluorescence spectroscopy[J]. Scientific reports, 2023, 13(1): 3195-3195.
[5] [5] Khademi S Z, Ghaffarifar F, Dalimi A, et al. Spontaneous abortion among Toxoplasma gondii IgG seropositive women: Molecular detection, genotype identification, and serological assessment with conventional ELISA and avidity ELISA[J]. Journal of Obstetrics and GynaecologyResearch, 2022, 48(10): 2479-2485.
[6] [6] Wang L, Liang J, Li F, et al. Deep learning based on the Vis-NIR two-dimensional spectroscopy for adulteration identification of beef and mutton[J]. Journal of Food Composition and Analysis, 2024, 126: 105890.
[7] [7] Liu G, Dong C, Shen W, et al. Development and validation of an HPLC - MS/MS method to determine clopidogrel in human plasma[J]. Acta Pharmaceutica Sinica B, 2016, 6(1): 55-63.
[8] [8] Gao L, Du B, Ma Q, et al. Multiplex-PCR method application to identify duck blood and its adulterated varieties[J]. Food Chemistry, 2024, 444: 138673.
[9] [9] Cialla-May D, Schmitt M, Popp J. Theoretical principles of Raman spectroscopy[J]. Physical Sciences Reviews, 2019, 4(6): 20170040.
[11] [11] Garcia-Rico E, Alvarez-Puebla R A, Guerrini L. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications[J]. Chemical Society Reviews, 2018, 47(13): 4909-4923.
[13] [13] Malard L M, Lafeta L, Cunha R S, et al. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS[J]. Physical Chemistry Chemical Physics, 2021, 23(41): 23428-23444.
[14] [14] Abdala J M D A, Lemos F R, De Almeida R M, et al. Noninvasive in vivo application of confocal Raman spectroscopy in identifying age-related biochemical changes in human stratum corneum and epidermis[J]. Vibrational Spectroscopy, 2024, 130: 103627.
[15] [15] Wael K D, LepotL, Gason F, et al. In search of blood—Detection of minute particles using spectroscopic methods[J]. Forensic Science International, 2008, 180(1): 37-42.
[16] [16] Virkler K, Lednev I K. Blood Species Identification for Forensic Purposes Using Raman Spectroscopy Combined with Advanced Statistical Analysis[J]. Analytical Chemistry, 2009, 81(18): 7773-7777.
[17] [17] Mclaughlin G, Doty K C, Lednev I K. Blood Raman Spectroscopy for Species Identification[J]. Analytical Chemistry, 2014, 86(23): 11628-11633.
[18] [18] Bian H, Wang P, Wang N, et al. Dual-model analysis for improving the discrimination performance of human and nonhuman blood based on Raman spectroscopy[J]. Biomedical optics express, 2018, 9(8): 3512-3522.
[19] [19] Xia J R, Li WW, Sun M T, et al. Application of SERS in the Detection of Fungi, Bacteria and Viruses[J]. Nanomaterials, 2022, 12(20): 3572.
[20] [20] Bi X Y, CzajkowskyD M, Shao Z F, et al. Digital colloid-enhanced Raman spectroscopy by single-molecule counting[J]. Nature, 2024, 628(8009): 771-775.
[21] [21] Boyd S, Bertino M F, Ye D, et al. Highly sensitive detection of blood by surface enhanced Raman scattering[J]. Journal of forensic sciences, 2013, 58(3): 753-756.
[22] [22] Shaine M L, Premasiri W R, Ingraham H M, et al. Surface enhanced Raman scattering for robust, sensitive detection and confirmatory identification of dried bloodstains[J]. The Analyst, 2020, 145(18): 6097-6110.
[23] [23] Reese T, Suarez C, Premasiri W R, et al. Surface enhanced Raman scattering specificity for detection and identification of dried bloodstains[J]. Forensic Science International, 2021, 328: 111000.
[24] [24] Suarez C, Premasiri W R, Ingraham H, et al. Ultra-sensitive, rapid detection of dried bloodstains by surface enhanced Raman scattering on Ag substrates[J]. Talanta, 2023, 259: 124535.
[25] [25] Fujihara J, Fujita Y, Yamamoto T, et al. Blood identification and discrimination between human and nonhuman blood using portable Raman spectroscopy[J]. International Journal of Legal Medicine, 2017, 131(2): 319-322.
[26] [26] Almehmadi L M, Lednev I K. Stand-off Raman spectroscopy is a promising approach for the detection and identification of bloodstains for forensic purposes[J]. Journal of Raman Spectroscopy, 2024, 55(2): 227-231.
[27] [27] Liu J, Sun J, Huang X, et al. Goldindec: A Novel Algorithm for Raman Spectrum Baseline Correction[J]. Applied Spectroscopy, 2015, 69(7): 834-842.
[28] [28] Gan Y, Sun Z, Chen Z, et al. Enhancement of the material point method using B-spline basis functions[J]. International Journal for Numerical Methods in Engineering, 2018, 113(3): 411-431.
[29] [29] Yang Y, Ma D, Yu T. Interpolation by nonuniform B-spline through uniform B-spline filter banks[C]. 2016 IEEE International Conference on Digital Signal Processing (DSP). Beijing, China: IEEE, 2016: 375-378.
[30] [30] Savitzky A, Golay E J M. Smoothing and Differentiation of Data by Simplified Least Squares Procedures[J]. Anal. Chem., 2002, 36(8): 1627-1639.
[31] [31] Barton S J, Ward T E, Hennelly B M. Algorithm for optimal denoising of Raman spectra[J]. Analytical Methods, 2018, 10(30): 3759-3769.
[32] [32] Ehrentreich F, Smmchen L. Spike removal and denoising of Raman spectra by wavelet transform methods[J]. Analytical Chemistry, 2001, 73(17): 4364-4373.
[33] [33] Guo H, He Q, Jiang B. The Application of Mexican Hat Wavelet Filtering and Averaging Algorithm in Raman Spectra Denoising[C]. 2008 Congress on Image and Signal Processing. Sanya, China: IEEE, 2008: 321-326.
[34] [34] Fan X, Zeng Y, Zhi Y, et al. Signal-to-noise ratio enhancement for Raman spectra based on optimized Raman spectrometer and convolutional denoising autoencoder[J]. Journal of Raman Spectroscopy, 2021, 52(4): 890-900.
[35] [35] Loc I, Kecoglu I, Unlu M B, et al. Denoising Raman spectra using fully convolutional encoder-decoder network[J]. Journal of Raman Spectroscopy, 2022, 53(8): 1445-1452.
[36] [36] Barton S, Alakkari S, O'Dwyer K, et al. Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra[J]. Sensors, 2021, 21(14): 4623-4623.
[37] [37] Wahl J, Sjdahl M, Ramser K. Single-Step Preprocessing of Raman Spectra Using Convolutional Neural Networks[J]. Applied Spectroscopy, 2020, 74(4): 427-438.
[38] [38] Gebrekidan M T, Knipfer C, Braeuer A S. Refinement of spectra using a deep neural network: Fully automated removal of noise and background[J]. Journal of Raman Spectroscopy, 2021, 52(3): 723-736.
[39] [39] Shen J, Li M, Li Z, et al. Single convolutional neural network model for multiple preprocessing of Raman spectra[J]. Vibrational Spectroscopy, 2022, 121: 103391.
[40] [40] Kazemzadeh M, Hisey C, Calderon M M, et al. Deep Learning as an Improved Method of Preprocessing Biomedical Raman Spectroscopy Data[J]. IEEE SENSORS JOURNAL, 2022.
[41] [41] Gao C, Zhao P, Fan Q, et al. Deep neural network: As the novel pipelines in multiple preprocessing for Raman spectroscopy[J]. SpectrochimicaActa, Part A: Molecular and Biomolecular Spectroscopy, 2023, 302: 123086.
[42] [42] Sikirzhytski V, Virkler K, Lednev K I. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes[J]. Sensors, 2010, 10(4): 2869-2884.
[43] [43] Zhang J, Zhou D, Chen M. Self-Learning Sparse PCA for Multimode Process Monitoring[J]. IEEETransactions on Industrial Informatics, 2021, 19(1): 29-39.
[44] [44] Granato D, Santos S J, Escher B G, et al. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective[J]. Trends in Food Science & Technology, 2018, 72: 83-90.
[47] [47] Zhang J, Bo L L, Xu W J, et al. Why Can SVM Be Performed in PCA Transformed Space for Classification[J]. Advanced Materials Research, 2011, 181-182: 1031-1037.
[48] [48] Mahmodi K, Mostafaei M, Mirzaee-Ghaleh E. Detection and classification of diesel-biodiesel blends by LDA, QDA and SVM approaches using an electronic nose[J]. Fuel, 2019, 258: 116114.
[53] [53] Liu J, Cai X, Niranjan M. GO-LDA: Generalised Optimal Linear Discriminant Analysis[J]. ArXiv, 2023, 23(05): 14568.
[54] [54] Li Z, Karanassios V. Artificial neural networks (ANNs) versus partial least squares (PLS) for spectral interference correction for taking part of the lab to the sample types of applications: An experimental study[C]. Sensing and Analysis Technologies for Biomedical and Cognitive Applications 2016. SPIE, 2016, 9871: 174-181.
[55] [55] Li S X, Zhang Y J, Zeng Q Y, et al. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine[J]. Laser Physics Letters, 2014, 11(6): 065603.
[56] [56] Won B S, Soo Y L, Soogeun K. Single-layer multiple-kernel-based convolutional neural network for biological Raman spectral analysis[J]. Journal of Raman Spectroscopy, 2020, 51(3): 414-421.
[57] [57] Qi Y, Hu D, Jiang Y, et al. Recent Progresses in Machine Learning Assisted Raman Spectroscopy[J]. Advanced Optical Materials, 2023, 11(14): 2203104.
[58] [58] McLaughlin G, Doty C K, Lednev K I. Discrimination of human and animal blood traces via Raman spectroscopy[J]. Forensic Science International, 2014, 238: 91-95.
[61] [61] Huang S, Wang P, Tian Y B, et al. Blood species identification based on deep learning analysis of Raman spectra[J]. Biomedical optics express, 2019, 10(12): 6129-6144.
[62] [62] Chen J S, Wang P, Tian Y B, et al. Identification of blood species based on surface-enhanced Raman scattering spectroscopy and convolutional neural network[J]. Journal of biophotonics, 2022, 16(2): e202200254.
Get Citation
Copy Citation Text
WANG Jinxiu, HU Chunli, SHEN Yuanyuan, ZHANG Xianbiao, CHEN Chang, TIAN Zhengan, LI Shenwei. Research progress in Raman spectroscopy of bloodfor species identification[J]. The Journal of Light Scattering, 2024, 36(4): 375
Category:
Received: Jun. 12, 2024
Accepted: Jan. 21, 2025
Published Online: Jan. 21, 2025
The Author Email: Shenwei LI (lishenwei17@163.com)