The Journal of Light Scattering, Volume. 36, Issue 4, 375(2024)

Research progress in Raman spectroscopy of bloodfor species identification

WANG Jinxiu1, HU Chunli2, SHEN Yuanyuan2, ZHANG Xianbiao3, CHEN Chang3, TIAN Zhengan2, and LI Shenwei1,2、*
Author Affiliations
  • 1School of Public Health, Nanjing Medical University, Nanjing 211166, China
  • 2Shanghai International Travel Healthcare Center (Shanghai Customs Port Clinic), Shanghai 200335, China
  • 3Shanghai Photonic View Technology company, Ltd, Shanghai200443, China
  • show less
    References(49)

    [4] [4] Achetib N, Falkena K, Swayambhu M, et al. Specific fluorescent signatures for body fluid identification using fluorescence spectroscopy[J]. Scientific reports, 2023, 13(1): 3195-3195.

    [5] [5] Khademi S Z, Ghaffarifar F, Dalimi A, et al. Spontaneous abortion among Toxoplasma gondii IgG seropositive women: Molecular detection, genotype identification, and serological assessment with conventional ELISA and avidity ELISA[J]. Journal of Obstetrics and GynaecologyResearch, 2022, 48(10): 2479-2485.

    [6] [6] Wang L, Liang J, Li F, et al. Deep learning based on the Vis-NIR two-dimensional spectroscopy for adulteration identification of beef and mutton[J]. Journal of Food Composition and Analysis, 2024, 126: 105890.

    [7] [7] Liu G, Dong C, Shen W, et al. Development and validation of an HPLC - MS/MS method to determine clopidogrel in human plasma[J]. Acta Pharmaceutica Sinica B, 2016, 6(1): 55-63.

    [8] [8] Gao L, Du B, Ma Q, et al. Multiplex-PCR method application to identify duck blood and its adulterated varieties[J]. Food Chemistry, 2024, 444: 138673.

    [9] [9] Cialla-May D, Schmitt M, Popp J. Theoretical principles of Raman spectroscopy[J]. Physical Sciences Reviews, 2019, 4(6): 20170040.

    [11] [11] Garcia-Rico E, Alvarez-Puebla R A, Guerrini L. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications[J]. Chemical Society Reviews, 2018, 47(13): 4909-4923.

    [13] [13] Malard L M, Lafeta L, Cunha R S, et al. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS[J]. Physical Chemistry Chemical Physics, 2021, 23(41): 23428-23444.

    [14] [14] Abdala J M D A, Lemos F R, De Almeida R M, et al. Noninvasive in vivo application of confocal Raman spectroscopy in identifying age-related biochemical changes in human stratum corneum and epidermis[J]. Vibrational Spectroscopy, 2024, 130: 103627.

    [15] [15] Wael K D, LepotL, Gason F, et al. In search of blood—Detection of minute particles using spectroscopic methods[J]. Forensic Science International, 2008, 180(1): 37-42.

    [16] [16] Virkler K, Lednev I K. Blood Species Identification for Forensic Purposes Using Raman Spectroscopy Combined with Advanced Statistical Analysis[J]. Analytical Chemistry, 2009, 81(18): 7773-7777.

    [17] [17] Mclaughlin G, Doty K C, Lednev I K. Blood Raman Spectroscopy for Species Identification[J]. Analytical Chemistry, 2014, 86(23): 11628-11633.

    [18] [18] Bian H, Wang P, Wang N, et al. Dual-model analysis for improving the discrimination performance of human and nonhuman blood based on Raman spectroscopy[J]. Biomedical optics express, 2018, 9(8): 3512-3522.

    [19] [19] Xia J R, Li WW, Sun M T, et al. Application of SERS in the Detection of Fungi, Bacteria and Viruses[J]. Nanomaterials, 2022, 12(20): 3572.

    [20] [20] Bi X Y, CzajkowskyD M, Shao Z F, et al. Digital colloid-enhanced Raman spectroscopy by single-molecule counting[J]. Nature, 2024, 628(8009): 771-775.

    [21] [21] Boyd S, Bertino M F, Ye D, et al. Highly sensitive detection of blood by surface enhanced Raman scattering[J]. Journal of forensic sciences, 2013, 58(3): 753-756.

    [22] [22] Shaine M L, Premasiri W R, Ingraham H M, et al. Surface enhanced Raman scattering for robust, sensitive detection and confirmatory identification of dried bloodstains[J]. The Analyst, 2020, 145(18): 6097-6110.

    [23] [23] Reese T, Suarez C, Premasiri W R, et al. Surface enhanced Raman scattering specificity for detection and identification of dried bloodstains[J]. Forensic Science International, 2021, 328: 111000.

    [24] [24] Suarez C, Premasiri W R, Ingraham H, et al. Ultra-sensitive, rapid detection of dried bloodstains by surface enhanced Raman scattering on Ag substrates[J]. Talanta, 2023, 259: 124535.

    [25] [25] Fujihara J, Fujita Y, Yamamoto T, et al. Blood identification and discrimination between human and nonhuman blood using portable Raman spectroscopy[J]. International Journal of Legal Medicine, 2017, 131(2): 319-322.

    [26] [26] Almehmadi L M, Lednev I K. Stand-off Raman spectroscopy is a promising approach for the detection and identification of bloodstains for forensic purposes[J]. Journal of Raman Spectroscopy, 2024, 55(2): 227-231.

    [27] [27] Liu J, Sun J, Huang X, et al. Goldindec: A Novel Algorithm for Raman Spectrum Baseline Correction[J]. Applied Spectroscopy, 2015, 69(7): 834-842.

    [28] [28] Gan Y, Sun Z, Chen Z, et al. Enhancement of the material point method using B-spline basis functions[J]. International Journal for Numerical Methods in Engineering, 2018, 113(3): 411-431.

    [29] [29] Yang Y, Ma D, Yu T. Interpolation by nonuniform B-spline through uniform B-spline filter banks[C]. 2016 IEEE International Conference on Digital Signal Processing (DSP). Beijing, China: IEEE, 2016: 375-378.

    [30] [30] Savitzky A, Golay E J M. Smoothing and Differentiation of Data by Simplified Least Squares Procedures[J]. Anal. Chem., 2002, 36(8): 1627-1639.

    [31] [31] Barton S J, Ward T E, Hennelly B M. Algorithm for optimal denoising of Raman spectra[J]. Analytical Methods, 2018, 10(30): 3759-3769.

    [32] [32] Ehrentreich F, Smmchen L. Spike removal and denoising of Raman spectra by wavelet transform methods[J]. Analytical Chemistry, 2001, 73(17): 4364-4373.

    [33] [33] Guo H, He Q, Jiang B. The Application of Mexican Hat Wavelet Filtering and Averaging Algorithm in Raman Spectra Denoising[C]. 2008 Congress on Image and Signal Processing. Sanya, China: IEEE, 2008: 321-326.

    [34] [34] Fan X, Zeng Y, Zhi Y, et al. Signal-to-noise ratio enhancement for Raman spectra based on optimized Raman spectrometer and convolutional denoising autoencoder[J]. Journal of Raman Spectroscopy, 2021, 52(4): 890-900.

    [35] [35] Loc I, Kecoglu I, Unlu M B, et al. Denoising Raman spectra using fully convolutional encoder-decoder network[J]. Journal of Raman Spectroscopy, 2022, 53(8): 1445-1452.

    [36] [36] Barton S, Alakkari S, O'Dwyer K, et al. Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra[J]. Sensors, 2021, 21(14): 4623-4623.

    [37] [37] Wahl J, Sjdahl M, Ramser K. Single-Step Preprocessing of Raman Spectra Using Convolutional Neural Networks[J]. Applied Spectroscopy, 2020, 74(4): 427-438.

    [38] [38] Gebrekidan M T, Knipfer C, Braeuer A S. Refinement of spectra using a deep neural network: Fully automated removal of noise and background[J]. Journal of Raman Spectroscopy, 2021, 52(3): 723-736.

    [39] [39] Shen J, Li M, Li Z, et al. Single convolutional neural network model for multiple preprocessing of Raman spectra[J]. Vibrational Spectroscopy, 2022, 121: 103391.

    [40] [40] Kazemzadeh M, Hisey C, Calderon M M, et al. Deep Learning as an Improved Method of Preprocessing Biomedical Raman Spectroscopy Data[J]. IEEE SENSORS JOURNAL, 2022.

    [41] [41] Gao C, Zhao P, Fan Q, et al. Deep neural network: As the novel pipelines in multiple preprocessing for Raman spectroscopy[J]. SpectrochimicaActa, Part A: Molecular and Biomolecular Spectroscopy, 2023, 302: 123086.

    [42] [42] Sikirzhytski V, Virkler K, Lednev K I. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes[J]. Sensors, 2010, 10(4): 2869-2884.

    [43] [43] Zhang J, Zhou D, Chen M. Self-Learning Sparse PCA for Multimode Process Monitoring[J]. IEEETransactions on Industrial Informatics, 2021, 19(1): 29-39.

    [44] [44] Granato D, Santos S J, Escher B G, et al. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective[J]. Trends in Food Science & Technology, 2018, 72: 83-90.

    [47] [47] Zhang J, Bo L L, Xu W J, et al. Why Can SVM Be Performed in PCA Transformed Space for Classification[J]. Advanced Materials Research, 2011, 181-182: 1031-1037.

    [48] [48] Mahmodi K, Mostafaei M, Mirzaee-Ghaleh E. Detection and classification of diesel-biodiesel blends by LDA, QDA and SVM approaches using an electronic nose[J]. Fuel, 2019, 258: 116114.

    [53] [53] Liu J, Cai X, Niranjan M. GO-LDA: Generalised Optimal Linear Discriminant Analysis[J]. ArXiv, 2023, 23(05): 14568.

    [54] [54] Li Z, Karanassios V. Artificial neural networks (ANNs) versus partial least squares (PLS) for spectral interference correction for taking part of the lab to the sample types of applications: An experimental study[C]. Sensing and Analysis Technologies for Biomedical and Cognitive Applications 2016. SPIE, 2016, 9871: 174-181.

    [55] [55] Li S X, Zhang Y J, Zeng Q Y, et al. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine[J]. Laser Physics Letters, 2014, 11(6): 065603.

    [56] [56] Won B S, Soo Y L, Soogeun K. Single-layer multiple-kernel-based convolutional neural network for biological Raman spectral analysis[J]. Journal of Raman Spectroscopy, 2020, 51(3): 414-421.

    [57] [57] Qi Y, Hu D, Jiang Y, et al. Recent Progresses in Machine Learning Assisted Raman Spectroscopy[J]. Advanced Optical Materials, 2023, 11(14): 2203104.

    [58] [58] McLaughlin G, Doty C K, Lednev K I. Discrimination of human and animal blood traces via Raman spectroscopy[J]. Forensic Science International, 2014, 238: 91-95.

    [61] [61] Huang S, Wang P, Tian Y B, et al. Blood species identification based on deep learning analysis of Raman spectra[J]. Biomedical optics express, 2019, 10(12): 6129-6144.

    [62] [62] Chen J S, Wang P, Tian Y B, et al. Identification of blood species based on surface-enhanced Raman scattering spectroscopy and convolutional neural network[J]. Journal of biophotonics, 2022, 16(2): e202200254.

    Tools

    Get Citation

    Copy Citation Text

    WANG Jinxiu, HU Chunli, SHEN Yuanyuan, ZHANG Xianbiao, CHEN Chang, TIAN Zhengan, LI Shenwei. Research progress in Raman spectroscopy of bloodfor species identification[J]. The Journal of Light Scattering, 2024, 36(4): 375

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 12, 2024

    Accepted: Jan. 21, 2025

    Published Online: Jan. 21, 2025

    The Author Email: Shenwei LI (lishenwei17@163.com)

    DOI:10.13883/j.issn1004-5929.202404002

    Topics