Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1837013(2024)
Hyperspectral Image Classification Based on Enhanced Dynamic-Graph-Convolutional Feature Extraction
Fig. 9. Classification visualization comparison of Indian Pines dataset. (a) False colour; (b) label diagram; (c) SVM; (d) HybridSN; (e) S2RGAnet; (f) EGNN; (g) SSPGAT; (h) DCGA
Fig. 10. Classification visualization comparison of WHU-Hi-HongHu dataset. (a) False colour; (b) label diagram; (c) SVM; (d) HybridSN; (e) S2RGAnet; (f) EGNN; (g) SSPGAT; (h) DCGA
Fig. 11. Classification visualization comparison of WHU-Hi-HanChuan dataset. (a) False colour; (b) label diagram; (c) SVM; (d) HybridSN; (e) S2RGAnet; (f) EGNN; (g) SSPGAT; (h) DCGA
Fig. 12. Comparison of small sample classification performance of different algorithms. (a) Indian Pines; (b) WHU-Hi-HanChuan
|
|
|
|
Get Citation
Copy Citation Text
Tie Li, Qiaoyu Gao, Wenxu Li. Hyperspectral Image Classification Based on Enhanced Dynamic-Graph-Convolutional Feature Extraction[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837013
Category: Digital Image Processing
Received: Dec. 29, 2023
Accepted: Feb. 18, 2024
Published Online: Sep. 14, 2024
The Author Email: Qiaoyu Gao (1368986899@qq.com)
CSTR:32186.14.LOP232792