Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1837013(2024)

Hyperspectral Image Classification Based on Enhanced Dynamic-Graph-Convolutional Feature Extraction

Tie Li, Qiaoyu Gao*, and Wenxu Li
Author Affiliations
  • School of Electronics and Information Engineering, Liaoning University of Engineering and Techonlogy, Huludao 125105, Liaoning, China
  • show less
    Figures & Tables(16)
    DCGA network structure diagram
    CA structure chart
    DSConv structure
    Superpixel and pixel conversion module
    Dynamic adjacency matrix
    Dataset of Indian Pines. (a) False color; (b) label diagram
    Dataset of WHU-Hi-HongHu. (a) False color; (b) label diagram
    Dataset of WHU-Hi- HanChuan. (a) False color; (b) label diagram
    Classification visualization comparison of Indian Pines dataset. (a) False colour; (b) label diagram; (c) SVM; (d) HybridSN; (e) S2RGAnet; (f) EGNN; (g) SSPGAT; (h) DCGA
    Classification visualization comparison of WHU-Hi-HongHu dataset. (a) False colour; (b) label diagram; (c) SVM; (d) HybridSN; (e) S2RGAnet; (f) EGNN; (g) SSPGAT; (h) DCGA
    Classification visualization comparison of WHU-Hi-HanChuan dataset. (a) False colour; (b) label diagram; (c) SVM; (d) HybridSN; (e) S2RGAnet; (f) EGNN; (g) SSPGAT; (h) DCGA
    Comparison of small sample classification performance of different algorithms. (a) Indian Pines; (b) WHU-Hi-HanChuan
    • Table 1. Comparative experiments on the Indian Pines dataset

      View table

      Table 1. Comparative experiments on the Indian Pines dataset

      ClassSVMHybridSNS2RGAnetEGNNSSPGATDCGA
      135.6488.8997.50100.00100.00100.00
      262.4986.4595.7395.4992.3099.25
      368.1892.9795.4099.4394.3799.84
      452.3395.3898.2891.7090.8298.35
      586.4092.9198.9098.8199.76100.00
      685.4796.5498.6898.5996.8098.40
      775.7561.1182.1064.5262.50100.00
      889.2796.3595.8897.7098.65100.00
      959.7841.1877.2876.1962.50100.00
      1068.8490.8494.5893.2095.4493.79
      1170.4494.7298.3298.7695.7899.09
      1261.3688.5698.0996.0184.6298.04
      1387.0697.73100.00100.0096.43100.00
      1489.5997.6797.0899.0298.9699.59
      1568.5296.5195.9698.5695.3399.66
      1698.6484.7197.4887.0679.1291.78
      OA73.8192.9397.0897.1994.7698.43
      AA72.4885.7095.5595.4089.4298.26
      Kappa69.8891.9296.6796.8094.0298.14
    • Table 2. Comparative experiments on the WHU-Hi-HongHu dataset

      View table

      Table 2. Comparative experiments on the WHU-Hi-HongHu dataset

      ClassSVMHybridSNS2RGAnetEGNNSSPGATDCGA
      190.8099.5098.5797.9798.9999.62
      282.4483.0696.1194.8592.2496.02
      379.3297.7595.9797.7394.0197.67
      498.5199.5699.7799.6999.5199.81
      587.2896.8098.8998.1198.0498.85
      695.5198.4896.9999.4898.4899.34
      784.2393.9093.6695.8695.7597.23
      840.3192.5191.7195.2288.5297.31
      990.5997.6399.2298.9499.6199.52
      1069.1391.2395.7498.2193.3196.96
      1176.9193.4196.0197.4094.6798.20
      1253.2390.1994.2192.2387.2295.24
      1372.8391.5997.4095.6594.9197.81
      1481.8390.3597.9296.3994.6995.53
      1565.1387.1291.4194.1997.9095.12
      1689.6798.9298.8598.2196.9499.18
      1767.3498.1097.0698.8495.1399.01
      1878.5491.1196.6298.2795.2999.20
      1985.8291.5288.3096.9491.5595.88
      2069.9894.6593.7498.5294.6694.92
      2140.2792.0792.0489.5885.8996.78
      2289.1198.2198.0997.1697.8199.76
      OA85.6896.9497.6698.3397.2498.76
      AA72.0393.2293.6796.6792.7597.25
      Kappa84.6596.1397.0497.8996.5198.43
    • Table 3. Comparative experiments on the WHU-Hi-HanChuan dataset

      View table

      Table 3. Comparative experiments on the WHU-Hi-HanChuan dataset

      ClassSVMHybridSNS2RGAnetEGNNSSPGATDCGA
      185.5596.8797.0696.2597.5797.48
      257.9893.1496.5894.9294.4398.26
      360.3195.8295.7998.1399.8096.43
      483.5694.9994.4197.5990.8496.96
      512.4695.5493.6698.1593.1885.51
      620.7677.7979.4189.1684.7778.66
      765.2483.8193.7392.4689.4693.22
      867.2189.7797.0592.1494.4796.38
      954.6888.1490.4989.2591.2994.67
      1094.3295.9692.9194.3296.1497.71
      1186.1091.5597.8398.1398.0195.71
      1243.2677.4883.9590.0590.5191.04
      1346.5981.0382.7889.2177.6488.07
      1479.3197.1994.8697.0696.8696.94
      1595.9576.5094.2698.9260.4495.16
      1697.9999.5999.8999.5199.8399.90
      OA79.8494.4996.0496.2395.9196.93
      AA65.7088.6692.7589.9590.6194.34
      Kappa76.3393.5595.3795.5895.2296.40
    • Table 4. Comparison of DCGA ablation in three datasets

      View table

      Table 4. Comparison of DCGA ablation in three datasets

      ParameterIndian PinesWHU-Hi-HongHuWHU-Hi-HanChuan
      DGCNDSConvDGCNDSConvDGCNDSConv
      OA92.9393.8491.9893.8790.1292.34
      AA90.1491.3788.4885.5386.3487.67
      Kappa91.4592.9589.7492.2488.4791.01
    Tools

    Get Citation

    Copy Citation Text

    Tie Li, Qiaoyu Gao, Wenxu Li. Hyperspectral Image Classification Based on Enhanced Dynamic-Graph-Convolutional Feature Extraction[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Dec. 29, 2023

    Accepted: Feb. 18, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Qiaoyu Gao (1368986899@qq.com)

    DOI:10.3788/LOP232792

    CSTR:32186.14.LOP232792

    Topics