Acta Optica Sinica, Volume. 43, Issue 7, 0715002(2023)
Simplified Multi-Channel Parallel Optical Performance Monitoring Based on Deep Learning
[1] Amrani A, Junyent G, Prat J et al. Performance monitor for all-optical networks based on homodyne spectroscopy[J]. IEEE Photonics Technology Letters, 12, 1564-1566(2000).
[2] Tian X Q, Su Y, Hu W S et al. Precise in-band OSNR and spectrum monitoring using high-resolution swept coherent detection[J]. IEEE Photonics Technology Letters, 18, 145-147(2006).
[3] Dorrer C. Monitoring of optical signals from constellation diagrams measured with linear optical sampling[J]. Journal of Lightwave Technology, 24, 313-321(2006).
[4] Wang Z H, Yang A Y, Guo P et al. Nonlinearity-tolerant OSNR estimation method based on correlation function and statistical moments[J]. Optical Fiber Technology, 39, 5-11(2017).
[5] Wang W L, Yang A Y, Guo P et al. Joint OSNR and interchannel nonlinearity estimation method based on fractional Fourier transform[J]. Journal of Lightwave Technology, 35, 4497-4506(2017).
[6] Wan Z Q, Yu Z M, Shu L et al. Intelligent optical performance monitor using multi-task learning based artificial neural network[J]. Optics Express, 27, 11281-11291(2019).
[7] Yang S L, Yang L, Luo F G et al. Joint fiber nonlinear noise estimation, OSNR estimation and modulation format identification based on asynchronous complex histograms and deep learning for digital coherent receivers[J]. Sensors, 21, 380(2021).
[8] Lü H J, Zhou X, Huo J H et al. Joint OSNR monitoring and modulation format identification on signal amplitude histograms using convolutional neural network[J]. Optical Fiber Technology, 61, 102455(2021).
[9] Khan F N, Zhong K P, Zhou X et al. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks[J]. Optics Express, 25, 17767-17776(2017).
[10] Wang C X, Fu S N, Xiao Z P et al. Long short-term memory neural network (LSTM-NN) enabled accurate optical signal-to-noise ratio (OSNR) monitoring[J]. Journal of Lightwave Technology, 37, 4140-4146(2019).
[11] Ju J Z, Liu Q T, Li H Z et al. Multi-task optical performance monitoring based on convolutional neural network[J]. Acta Optica Sinica, 42, 2206002(2022).
[12] Fan X J, Xie Y L, Ren F et al. Joint optical performance monitoring and modulation format/bit-rate identification by CNN-based multi-task learning[J]. IEEE Photonics Journal, 10, 7906712(2018).
[13] Cheng Y J, Fu S N, Tang M et al. Multi-task deep neural network (MT-DNN) enabled optical performance monitoring from directly detected PDM-QAM signals[J]. Optics Express, 27, 19062-19074(2019).
[14] Cheng Y J, Zhang W K, Fu S N et al. Transfer learning simplified multi-task deep neural network for PDM-64QAM optical performance monitoring[J]. Optics Express, 28, 7607-7617(2020).
[15] Luo H J, Huang Z L, Wu X et al. Cost-effective multi-parameter optical performance monitoring using multi-task deep learning with adaptive ADTP and AAH[J]. Journal of Lightwave Technology, 39, 1733-1741(2021).
[16] Zhang J, Li Y J, Hu S H et al. Joint modulation format identification and OSNR monitoring using cascaded neural network with transfer learning[J]. IEEE Photonics Journal, 13, 7200910(2021).
[17] Wang D S, Xu Y L, Li J Q et al. Comprehensive eye diagram analysis: a transfer learning approach[J]. IEEE Photonics Journal, 11, 7205019(2019).
[18] Jha D K, Mishra J K. Transfer learning approach toward joint monitoring of bit rate and modulation format[J]. Applied Optics, 61, 3695-3701(2022).
[19] Zhu X R, Liu B, Zhu X et al. Transfer learning assisted convolutional neural networks for modulation format recognition in few-mode fibers[J]. Optics Express, 29, 36953-36963(2021).
[20] Dong Z H, Khan F N, Sui Q et al. Optical performance monitoring: a review of current and future technologies[J]. Journal of Lightwave Technology, 34, 525-543(2016).
[21] Zhou Z H[M]. Machine learning, 97-107(2016).
[22] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 22, 1345-1359(2010).
[23] Zhuang F Z, Qi Z Y, Duan K Y et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 109, 43-76(2021).
[24] Abadi M, Barham P, Chen J et al. TensorFlow: a system for large-scale machine learning[C], 265-283(2016).
[25] Soydaner D. A comparison of optimization algorithms for deep learning[J]. International Journal of Pattern Recognition and Artificial Intelligence, 34, 2052013(2020).
Get Citation
Copy Citation Text
Mengyan Li, Jintao Wu, Jingyu Yang, Lifu Zhang, Yong Tan, Tian Qiu, Yuebin Li, Heming Deng, Fengguang Luo, Liu Yang. Simplified Multi-Channel Parallel Optical Performance Monitoring Based on Deep Learning[J]. Acta Optica Sinica, 2023, 43(7): 0715002
Category: Machine Vision
Received: Nov. 22, 2022
Accepted: Jan. 7, 2023
Published Online: Apr. 6, 2023
The Author Email: Luo Fengguang (fgluo@hust.edu.cn), Yang Liu (liuyang89@hust.edu.cn)