Laser & Optoelectronics Progress, Volume. 60, Issue 4, 0411001(2023)
Total Generalized Variation Constrained Weighted Least-Squares for Low-Dose Computed Tomography Reconstruction
[1] Donnelly L F, Emery K H, Brody A S et al. Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large Children’s Hospital[J]. AJR American Journal of Roentgenology, 176, 303-306(2001).
[2] Niu S Z, Liu H, Zhang M Z et al. Iterative reconstruction for low-dose cerebral perfusion computed tomography using prior image induced diffusion tensor[J]. Physics in Medicine and Biology, 66, 115024(2021).
[3] Li S, Zeng D, Bian Z Y et al. Learning non-local perfusion textures for high-quality computed tomography perfusion imaging[J]. Physics in Medicine & Biology, 66, 115007(2021).
[4] Chen H, Zhang Y, Zhang W H et al. Low-dose CT via convolutional neural network[J]. Biomedical Optics Express, 8, 679-694(2017).
[5] He J, Yang Y, Wang Y B et al. Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction[J]. IEEE Transactions on Medical Imaging, 38, 371-382(2019).
[6] Li T F, Li X, Wang J et al. Nonlinear sinogram smoothing for low-dose X-ray CT[J]. IEEE Transactions on Nuclear Science, 51, 2505-2513(2004).
[7] He J, Wang Y B, Ma J H. Radon inversion via deep learning[J]. IEEE Transactions on Medical Imaging, 39, 2076-2087(2020).
[8] Wang J, Li T F, Lu H B et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 25, 1272-1283(2006).
[9] Wang J, Lu H B, Wen J H et al. Multiscale penalized weighted least-squares sinogram restoration for low-dose X-ray computed tomography[J]. IEEE Transactions on Bio-medical Engineering, 55, 1022-1031(2008).
[10] Niu S Z, Liu H, Zhu Y et al. Generalized penalized weighted least-squares approach for low-dose X-ray ct reconstruction[J]. Journal on Numerical Methods and Computer Applications, 42, 289-302(2021).
[11] Manduca A, Yu L F, Trzasko J D et al. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT[J]. Medical Physics, 36, 4911-4919(2009).
[12] Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise[J]. Medical Physics, 25, 2139-2147(1998).
[13] Niu S Z, Gao Y H, Bian Z Y et al. Sparse-view X-ray CT reconstruction via total generalized variation regularization[J]. Physics in Medicine and Biology, 59, 2997-3017(2014).
[14] Niu S Z, Huang J, Bian Z Y et al. Iterative reconstruction for sparse-view X-ray CT using alpha-divergence constrained total generalized variation minimization[J]. Journal of X-ray Science and Technology, 25, 673-688(2017).
[15] Ma Y J, Wei B, Feng P et al. Low-dose CT image denoising using a generative adversarial network with a hybrid loss function for noise learning[J]. IEEE Access, 8, 67519-67529(2020).
[16] Shan H M, Zhang Y, Yang Q S et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network[J]. IEEE Transactions on Medical Imaging, 37, 1522-1534(2018).
[17] Xu Q, Yu H Y, Mou X Q et al. Low-dose X-ray CT reconstruction via dictionary learning[J]. IEEE Transactions on Medical Imaging, 31, 1682-1697(2012).
[18] Kang E, Min J H, Ye J C. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction[J]. Medical Physics, 44, e360-e375(2017).
[19] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[20] Li H Y, Liang H, Hu Q H et al. Deep learning for position fixing in the micron scale by using convolutional neural networks[J]. Chinese Optics Letters, 18, 050602(2020).
[21] Shen H, Gao J M. Deep learning virtual colorful lens-free on-chip microscopy[J]. Chinese Optics Letters, 18, 121705(2020).
[22] Li Y, Di J L, Ren L et al. Deep-learning-based prediction of living cells mitosis via quantitative phase microscopy[J]. Chinese Optics Letters, 19, 051701(2021).
[23] Chen H, Zhang Y, Kalra M K et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 36, 2524-2535(2017).
[24] Lu H B, Li X, Hsiao I T et al. Analytical noise treatment for low-dose CT projection data by penalized weighted least-square smoothing in the K-L domain[J]. Proceedings of SPIE, 4682, 146-152(2002).
[25] Bredies K, Kunisch K, Pock T. Total generalized variation[J]. SIAM Journal on Imaging Sciences, 3, 492-526(2010).
[26] Ma J H, Liang Z R, Fan Y et al. Variance analysis of X-ray CT sinograms in the presence of electronic noise background[J]. Medical Physics, 39, 4051-4065(2012).
[28] Bredies K, Dong Y Q, Hintermüller M. Spatially dependent regularization parameter selection in total generalized variation models for image restoration[J]. International Journal of Computer Mathematics, 90, 109-123(2013).
[29] Ma J H, Zhang H, Gao Y et al. Iterative image reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge-preserving prior[J]. Physics in Medicine and Biology, 57, 7519-7542(2012).
[30] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).
[31] Zhang L, Zhang L, Mou X Q et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 20, 2378-2386(2011).
Get Citation
Copy Citation Text
Shanzhou Niu, Mengzhen Zhang, Yang Qiu, Shuo Li, Lijing Liang, Hong Liu, Guoliang Liu. Total Generalized Variation Constrained Weighted Least-Squares for Low-Dose Computed Tomography Reconstruction[J]. Laser & Optoelectronics Progress, 2023, 60(4): 0411001
Category: Imaging Systems
Received: Nov. 1, 2021
Accepted: Dec. 21, 2021
Published Online: Feb. 14, 2023
The Author Email: Shanzhou Niu (szniu@gnnu.edu.cn)