Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1786(2025)

High-throughput Calculation of Electron Band Structure and Correlation Analysis of Electrochemical Characteristics of Cathodes in Secondary Battery

LIANG Shuquan1,2, GUO Shan1, CAO Xinxin1,2, MA Junjian1, ZHOU Jiang1,2, and FANG Guozhao1,2
Author Affiliations
  • 1School of Materials Science and Engineering, Central South University, Changsha 410083, China
  • 2Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
  • show less
    References(32)

    [2] [2] CAO X X, PAN A Q, LIU S N, et al. Chemical synthesis of 3D graphene-like cages for sodium-ion batteries applications[J]. Adv Energy Mater, 2017, 7(20): 1700797.

    [3] [3] LIANG Y L, DONG H, AURBACH D, et al. Current status and future directions of multivalent metal-ion batteries[J]. Nat Energy, 2020, 5: 646–656.

    [4] [4] WANG D, JIAO Y, SHI W, et al. Fundamentals and advances of ligand field theory in understanding structure-electrochemical property relationship of intercalation-type electrode materials for rechargeable batteries[J]. Prog Mater Sci, 2023, 133: 101055.

    [7] [7] HUANG Y H. The discovery of cathode materials for lithium-ion batteries from the view of interdisciplinarity[J]. Interdiscip Mater, 2022, 1(3): 323–329.

    [8] [8] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587–603.

    [9] [9] WANG Z Q, WANG D, ZOU Z Y, et al. Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density[J]. Natl Sci Rev, 2020, 7(11): 1768–1775.

    [10] [10] JULIEN C, MAUGER A, ZAGHIB K, et al. Comparative issues of cathode materials for Li-ion batteries[J]. Inorganics, 2014, 2(1): 132–154.

    [12] [12] SHOLL D S, STECKEL J A. Density Functional Theory : A practical introduction [M]. Germany: Wiley, 2009.

    [13] [13] SETYAWAN W, CURTAROLO S. High-throughput electronic band structure calculations: Challenges and tools[J]. Comput Mater Sci, 2010, 49(2): 299–312.

    [15] [15] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B): B864–B871.

    [16] [16] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140(4A): A1133–A1138.

    [18] [18] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B Condens Matter, 1992, 45(23): 13244–13249.

    [19] [19] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.

    [20] [20] KRONIG R D L, PENNEY W G, FOWLER R H. Quantum mechanics of electrons in crystal lattices[J]. Proc R Soc Lond A, 1931, 130(814): 499–513.

    [21] [21] HERRING C, HILL A G. The theoretical constitution of metallic beryllium[J]. Phys Rev, 1940, 58(2): 132–162.

    [22] [22] IHM J, ZUNGER A, COHEN M L. Momentum-space formalism for the total energy of solids[J]. J Phys C Solid State Phys, 1979, 12(21): 4409–4422.

    [23] [23] ANDERSEN O K. Linear methods in band theory[J]. Phys Rev B, 1975, 12(8): 3060–3083.

    [24] [24] HAMANN D R, SCHLTER M, CHIANG C. Norm-conserving pseudopotentials[J]. Phys Rev Lett, 1979, 43(20): 1494–1497.

    [25] [25] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B Condens Matter, 1990, 41(11): 7892–7895.

    [26] [26] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.

    [27] [27] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15–50.

    [28] [28] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.

    [29] [29] GROOM C R, BRUNO I J, LIGHTFOOT M P, et al. The Cambridge structural database[J]. Acta Crystallogr Sect B, 2016, 72(2): 171–179.

    [30] [30] HINUMA Y, PIZZI G, KUMAGAI Y, et al. Band structure diagram paths based on crystallography[J]. Comput Mater Sci, 2017, 128: 140–184.

    [31] [31] YOU Y, MANTHIRAM A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(2): 1701785.

    [32] [32] ZHOU Y F, XU G F, LIN J D, et al. Reversible multielectron redox chemistry in a NASICON-type cathode toward high-energy-density and long-life sodium-ion full batteries[J]. Adv Mater, 2023, 35(44): e2304428.

    [33] [33] LIU Y, RONG X H, BAI R, et al. Identifying the intrinsic anti-site defect in manganese-rich NASICON-type cathodes[J]. Nat Energy, 2023, 8: 1088–1096.

    [34] [34] DROZHZHIN O A, TERTOV I V, ALEKSEEVA A M, et al. -NaVP2O7 as a superior electrode material for Na-ion batteries[J]. Chem Mater, 2019, 31(18): 7463–7469.

    [35] [35] LE MEINS J M, CROSNIER-LOPEZ M P, HEMON-RIBAUD A, et al. Phase transitions in the Na3M2(PO4)2F3 family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies[J]. J Solid State Chem, 1999, 148(2): 260–277.

    [36] [36] ZATOVSKY I V. NASICON-type Na3V2(PO4)3[J]. Acta Crystallogr E Struct Rep Online, 2010, 66(2): i12.

    [37] [37] NOVIKOVA S A, LARKOVICH R V, CHEKANNIKOV A A, et al. Electrical conductivity and electrochemical characteristics of Na3V2(PO4)3-based NASICON-type materials[J]. Inorg Mater, 2018, 54(8): 794–804.

    [38] [38] GU Z Y, GUO J Z, CAO J M, et al. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density[J]. Adv Mater, 2022, 34(14): 2110108.

    Tools

    Get Citation

    Copy Citation Text

    LIANG Shuquan, GUO Shan, CAO Xinxin, MA Junjian, ZHOU Jiang, FANG Guozhao. High-throughput Calculation of Electron Band Structure and Correlation Analysis of Electrochemical Characteristics of Cathodes in Secondary Battery[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1786

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 11, 2024

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240779

    Topics