Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1786(2025)
High-throughput Calculation of Electron Band Structure and Correlation Analysis of Electrochemical Characteristics of Cathodes in Secondary Battery
[2] [2] CAO X X, PAN A Q, LIU S N, et al. Chemical synthesis of 3D graphene-like cages for sodium-ion batteries applications[J]. Adv Energy Mater, 2017, 7(20): 1700797.
[3] [3] LIANG Y L, DONG H, AURBACH D, et al. Current status and future directions of multivalent metal-ion batteries[J]. Nat Energy, 2020, 5: 646–656.
[4] [4] WANG D, JIAO Y, SHI W, et al. Fundamentals and advances of ligand field theory in understanding structure-electrochemical property relationship of intercalation-type electrode materials for rechargeable batteries[J]. Prog Mater Sci, 2023, 133: 101055.
[7] [7] HUANG Y H. The discovery of cathode materials for lithium-ion batteries from the view of interdisciplinarity[J]. Interdiscip Mater, 2022, 1(3): 323–329.
[8] [8] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587–603.
[9] [9] WANG Z Q, WANG D, ZOU Z Y, et al. Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density[J]. Natl Sci Rev, 2020, 7(11): 1768–1775.
[10] [10] JULIEN C, MAUGER A, ZAGHIB K, et al. Comparative issues of cathode materials for Li-ion batteries[J]. Inorganics, 2014, 2(1): 132–154.
[12] [12] SHOLL D S, STECKEL J A. Density Functional Theory : A practical introduction [M]. Germany: Wiley, 2009.
[13] [13] SETYAWAN W, CURTAROLO S. High-throughput electronic band structure calculations: Challenges and tools[J]. Comput Mater Sci, 2010, 49(2): 299–312.
[15] [15] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B): B864–B871.
[16] [16] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140(4A): A1133–A1138.
[18] [18] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B Condens Matter, 1992, 45(23): 13244–13249.
[19] [19] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.
[20] [20] KRONIG R D L, PENNEY W G, FOWLER R H. Quantum mechanics of electrons in crystal lattices[J]. Proc R Soc Lond A, 1931, 130(814): 499–513.
[21] [21] HERRING C, HILL A G. The theoretical constitution of metallic beryllium[J]. Phys Rev, 1940, 58(2): 132–162.
[22] [22] IHM J, ZUNGER A, COHEN M L. Momentum-space formalism for the total energy of solids[J]. J Phys C Solid State Phys, 1979, 12(21): 4409–4422.
[23] [23] ANDERSEN O K. Linear methods in band theory[J]. Phys Rev B, 1975, 12(8): 3060–3083.
[24] [24] HAMANN D R, SCHLTER M, CHIANG C. Norm-conserving pseudopotentials[J]. Phys Rev Lett, 1979, 43(20): 1494–1497.
[25] [25] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B Condens Matter, 1990, 41(11): 7892–7895.
[26] [26] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.
[27] [27] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15–50.
[28] [28] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.
[29] [29] GROOM C R, BRUNO I J, LIGHTFOOT M P, et al. The Cambridge structural database[J]. Acta Crystallogr Sect B, 2016, 72(2): 171–179.
[30] [30] HINUMA Y, PIZZI G, KUMAGAI Y, et al. Band structure diagram paths based on crystallography[J]. Comput Mater Sci, 2017, 128: 140–184.
[31] [31] YOU Y, MANTHIRAM A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(2): 1701785.
[32] [32] ZHOU Y F, XU G F, LIN J D, et al. Reversible multielectron redox chemistry in a NASICON-type cathode toward high-energy-density and long-life sodium-ion full batteries[J]. Adv Mater, 2023, 35(44): e2304428.
[33] [33] LIU Y, RONG X H, BAI R, et al. Identifying the intrinsic anti-site defect in manganese-rich NASICON-type cathodes[J]. Nat Energy, 2023, 8: 1088–1096.
[34] [34] DROZHZHIN O A, TERTOV I V, ALEKSEEVA A M, et al. -NaVP2O7 as a superior electrode material for Na-ion batteries[J]. Chem Mater, 2019, 31(18): 7463–7469.
[35] [35] LE MEINS J M, CROSNIER-LOPEZ M P, HEMON-RIBAUD A, et al. Phase transitions in the Na3M2(PO4)2F3 family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies[J]. J Solid State Chem, 1999, 148(2): 260–277.
[36] [36] ZATOVSKY I V. NASICON-type Na3V2(PO4)3[J]. Acta Crystallogr E Struct Rep Online, 2010, 66(2): i12.
[37] [37] NOVIKOVA S A, LARKOVICH R V, CHEKANNIKOV A A, et al. Electrical conductivity and electrochemical characteristics of Na3V2(PO4)3-based NASICON-type materials[J]. Inorg Mater, 2018, 54(8): 794–804.
[38] [38] GU Z Y, GUO J Z, CAO J M, et al. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density[J]. Adv Mater, 2022, 34(14): 2110108.
Get Citation
Copy Citation Text
LIANG Shuquan, GUO Shan, CAO Xinxin, MA Junjian, ZHOU Jiang, FANG Guozhao. High-throughput Calculation of Electron Band Structure and Correlation Analysis of Electrochemical Characteristics of Cathodes in Secondary Battery[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1786
Special Issue:
Received: Dec. 11, 2024
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: