Acta Photonica Sinica, Volume. 52, Issue 10, 1052402(2023)
Surface Enhanced Infrared Silver Antenna Arrays for Polymer Sensing
[1] FENG Haizhi, LI Long, WANG Dong et al. Application progress of mid-infrared and near-infrared spectroscopy in quality detection of small grains[J]. Spectroscopy and Spectral Analysis, 43, 16-24(2023).
[2] ZHAO Zhengbao, XIANG Guangya[M]. Organic chemistry(2016).
[3] LU Jinfang, ZHENG Jin, WANG Yadi et al. Response of Escherichia coli to hydrogen nanobubbles: an in vitro evaluation using synchrotron infrared spectroscopy[J]. Journal of Zhejiang University-Science B, 22, 966-970(2021).
[4] LIU Kelin, HE Yueshan, WANG Zhao et al. Progress in determination of protein secondary structure by Fourier infrared spectroscopy and Raman spectroscopy[J]. Food and Fermentation Industries, 49, 293-298(2023).
[5] PAN Wenxue, HUANG Yinbo, LIU Dandan et al. Observation and inversion of the N2O gas column concentration in Hefei, China[J]. Acta Photonica Sinica, 52, 0352116(2023).
[6] LIU Dandan, HUANG Yinbo, CAO Zhensong et al. Analysis of total columns of greenhouse gas based on direct observation and comparison with satellite data in Hefei[J]. Acta Photonica Sinica, 49, 0301002(2020).
[7] HARTSTEIN A, KIRTLEY J R, TSANG J C. Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers[J]. Physical Review Letters, 45, 201-204(1980).
[8] LI Nannan, ZHANG Han, WANG Jianfang. Surface-enhanced infrared absorption[J]. Scientia Sinica Physica, 49, 30-43(2019).
[9] LE F, BRANDL D W, URZHUMOV Y A et al. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption[J]. ACS Nano, 2, 707-718(2008).
[10] YE Sunjie, LI Fang, LU Yun. Contribution of charge-transfer effect to surface-enhanced IR for Ag @ Py nanoparticles[J]. Physical Chemistry Chemical Physics, 11, 2480-2484(2009).
[11] ARAZ N D, NIHAL S O, ASLI Y et al. Gold nanorod arrays enable highly sensitive bacterial detection via Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy[J]. Colloids and Surfaces B: Biointerfaces, 206, 111939(2021).
[12] GIORDANO M C, TZSCHOPPE M, BARELLI M et al. Self-organized nanorod arrays for large-area surface-enhanced infrared absorption[J]. ACS Applied Materials & Interfaces, 12, 11155-11162(2020).
[13] YUE Weisheng, KRAVETS V, PU Mingbo et al. Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy[J]. Nanotechnology, 30, 465206(2019).
[14] LI Nanan, YIN Hang, ZHUO Xiaolu et al. Infrared-responsive colloidal silver nanorods for surface-enhanced infrared absorption[J]. Advanced Optical Materials, 6, 1800436(2018).
[15] BROWN L V, ZHAO Ke, KING N et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties[J]. Journal of the American Chemical Society, 135, 3688-3695(2013).
[16] VALENTINA D M, ANDREA C, ALESSIO C et al. Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy[J]. Sensors & Actuators B: Chemical, 286, 600-607(2019).
[17] ZHOU Hong, HUI Xindan, LI Dongxiao et al. Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases[J]. Advanced Science, 7, 2001173(2020).
[18] LI Dongxiao, ZHOU Hong, HUI Xindan et al. Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly(ethyl cyanoacrylate)[J]. Advanced Science, 8, e2101879(2021).
[19] YOKOYAMA T, DAO T D, CHEN K et al. Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1 000 ℃[J]. Advanced Optical Materials, 4, 1987-1992(2016).
[20] DAO T D, CHEN K, NAGAO T. Dual-band in situ molecular spectroscopy using single-sized Al-disk perfect absorbers[J]. Nanoscale, 11, 9508-9517(2019).
[21] AOUANI H, ŠÍPOVÁ H, RAHMANI M et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas[J]. ACS Nano, 7, 669-675(2013).
[22] WALLACE G Q, FOY H C, ROSENDAHL S M et al. Dendritic plasmonics for mid-infrared spectroscopy[J]. The Journal of Physical Chemistry C, 121, 9497-9507(2017).
[23] MARCELLIS A D, PALANGE E, JANNEH M et al. Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing[J]. Plasmonics, 12, 293-298(2017).
[24] BAGHERI S, WEBER K, GISSIBL T et al. Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement[J]. ACS Photonics, 2, 779-786(2015).
[25] PALIK, EDWARD D. Handbook of optical constants of solids[J]. Academic Press, 1, 1-804(2012).
[26] FRANK N, CHRISTIAN H, KSENIA W et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 117, 5110-5145(2017).
[27] WEI Jingxuan, LI Ying, CHANG Yuhua et al. Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices[J]. ACS Applied Materials & Interfaces, 11, 47270-47278(2019).
[28] DING Zhixin. Optimization and spectral prediction of all-dielectric metasurface parameters based on Fano resonance[D](2023).
Get Citation
Copy Citation Text
Hengliang ZHU, Fang SONG, Xinyu ZHANG, Chuantao ZHENG, Yiding WANG. Surface Enhanced Infrared Silver Antenna Arrays for Polymer Sensing[J]. Acta Photonica Sinica, 2023, 52(10): 1052402
Category:
Received: Jun. 18, 2023
Accepted: Aug. 25, 2023
Published Online: Dec. 5, 2023
The Author Email: Fang SONG (songfang@jlu.edu.cn)