Chinese Journal of Lasers, Volume. 48, Issue 11, 1110003(2021)

LiDAR Data Classification Based on Dilated Convolution Capsule Network

Aili Wang1, Yuxiao Zhang1, Haibin Wu1、*, Kaiyuan Jiang1, and Yuji Iwahori2
Author Affiliations
  • 1Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
  • 2Department of Computer Science, Chubu University, Aichi 487- 8501, Japan
  • show less
    Figures & Tables(17)
    Structure of dilated convolution capsule network
    Residual block structure
    Dilated convolution with different dilation rates. (a) r=1; (b) r=2; (c) r=3
    Odd-even mixed dilation rates. (a) r=5; (b) r=2; (c) r=1
    Capsule network structure
    Capsule structure
    DSM and groundtruth map of Bayview Park dataset. (a) DSM; (b) groundtruth map
    DSM and groundtruth map of Recology dataset. (a) DSM; (b) groundtruth map
    Dilation rate distribution of different datasets. (a) Bayview Park dataset; (b) Recology dataset
    Classification results of Bayview Park dataset. (a) Groundtruth map; (b) SVM; (c) Random Forest; (d) CNN; (e) CapsNet; (f) ResNet; (g) Dilated-ResNet; (h) ResCapsNet; (i) DCCN
    Classification results of Recology dataset. (a) Groundtruth map; (b) SVM; (c) Random Forest; (d) CNN; (e) CapsNet; (f) ResNet; (g) Dilated-ResNet; (h) ResCapsNet; (i) DCCN
    • Table 1. ResNet-34 model parameters

      View table

      Table 1. ResNet-34 model parameters

      Layer nameOutput sizeResNet-34 parameter setting
      Conv 118×183×3, 16, stride 1
      Conv2_x18×183×3 max pooling, stride 23×33×3,16×3
      Conv3_x18×183×33×3,28×4
      Conv4_x,distribution ofdilation rate is[1,2,5]18×183×33×3,40×6
      Conv5_x,distribution ofdilation rate is[1,2,5]18×183×33×3,52×3
      Output9×9average pooling, stride 2
    • Table 2. Classification results of different training samples on Bayview Park dataset

      View table

      Table 2. Classification results of different training samples on Bayview Park dataset

      Training sampleIndex400500600700
      OA /%72.30±2.0775.27±1.3675.36±2.0276.75±0.76
      SVMAA /%76.98±1.4278.50±2.1078.86±1.1281.20±2.27
      100K65.22±1.7966.36±0.9567.65±1.7269.12±2.23
      OA /%86.56±0.7587.34±0.6288.23±0.3490.56±0.47
      Random ForestAA /%88.94±1.5289.12±0.2389.45±0.3890.14±0.73
      100K82.66±0.2483.61±0.3884.26±0.3986.73±0.64
      OA /%87.23±2.0188.12±0.9688.52±0.4390.72±1.69
      CNNAA /%88.70±1.1389.63±2.7189.96±1.6590.23±0.68
      100K83.26±1.4585.25±1.4686.23±1.7886.72±2.34
      OA /%85.43±1.1287.25±0.8990.07±1.0890.73±0.36
      CapsNetAA /%84.26±1.7888.26±1.3891.14±1.3591.86±1.52
      100K81.21±0.8183.19±0.6986.81±1.4586.92±1.22
      OA /%90.25±1.7392.16±1.2693.26±1.2194.59±1.20
      ResNetAA /%91.53±1.3893.23±0.8194.25±1.0695.86±1.25
      100K87.15±1.4989.46±1.4891.26±1.7793.49±1.28
      OA /%91.32±0.4593.16±0.7593.89±0.3495.84±1.25
      Dilated-ResNetAA /%92.67±0.7694.09±1.0695.27±0.8796.42±1.08
      100K88.46±1.0591.58±0.5792.65±0.6594.15±1.34
      OA /%93.15±0.5294.79±0.4194.59±0.7396.42±0.71
      ResCapsNetAA /%94.27±0.4395.42±0.9096.03±0.7597.01±1.07
      100K90.49±1.0092.48±0.4793.23±0.7594.99±1.17
      OA /%93.48±0.3994.51±04795.45±0.6097.07±0.54
      DCCNAA /%94.97±0.4495.39±0.6195.90±0.7497.70±0.20
      100K91.36±0.5792.79±0.4294.02±0.7296.14±0.71
    • Table 3. Classification results of different training samples on Recology dataset

      View table

      Table 3. Classification results of different training samples on Recology dataset

      Training sampleIndex400500600700
      OA /%72.68±1.8976.83±0.2676.94±2.2577.25±0.86
      SVMAA /%77.20±1.2278.69±1.8778.73±1.0881.28±2.33
      100K67.22±1.7968.42±0.9868.82±1.5969.78±2.24
      OA /%85.24±1.2587.33±0.7489.20±1.8891.75±1.00
      Random ForestAA /%88.36±1.9289.85±3.0690.27±1.2691.29±1.41
      100K82.25±0.8886.26±1.5786.59±1.9789.22±1.34
      OA /%86.26±1.4888.24±0.9890.52±0.6892.73±1.86
      CNNAA /%89.16±2.8490.15±0.2990.67±1.2492.44±2.34
      100K83.18±1.5986.78±0.6786.83±0.8890.15±2.17
      OA /%80.73±1.0784.92±1.6786.75±0.4390.26±1.24
      CapsNetAA /%81.93±1.9486.29±1.0886.95±1.0991.26±1.99
      100K76.79±1.6881.67±0.8583.92±0.7688.37±1.52
      OA /%90.58±1.9293.56±1.4295.57±0.7695.83±0.99
      ResNetAA /%88.86±2.1494.52±1.2294.33±1.3295.36±1.88
      100K88.84±2.3493.04±1.7094.98±0.8495.24±1.27
      OA /%92.07±0.9893.75±0.3494.87±0.5495.89±0.76
      Dilated-ResNetAA /%93.76±0.6794.88±0.9695.98±1.2596.34±0.38
      100K90.67±0.3492.39±1.0794.77±1.1595.09±0.47
      OA /%93.44±1.2194.35±1.2396.07±0.4896.31±0.73
      ResCapsNetAA /%94.63±0.1795.22±06097.16±1.1597.30±0.17
      100K91.29±0.7093.79±0.9995.33±0.6395.43±0.31
      OA /%94.01±0.3694.99±0.9696.42±0.6396.98±0.76
      DCCNAA /%94.97±0.5895.67±0.4697.49±0.6997.77±0.78
      100K93.28±0.3494.35±0.9996.06±0.7096.41±0.90
    • Table 4. Classification results of each class for 700 samples on Bayview Park dataset unit:%

      View table

      Table 4. Classification results of each class for 700 samples on Bayview Park dataset unit:%

      ClasseSVMRandomForestCNNCapsNetResNetDilated-ResNetResCapsNetDCCN
      Building182.20±3.7295.24±3.7593.53±1.5094.28±1.4598.26±1.5598.96±1.0499.36±0.6499.74±0.26
      Building284.59±2.5898.83±1.0392.72±1.0895.22±2.0399.64±0.3699.78±0.2299.79±0.2199.54±0.46
      Building391.36±4.9610092.90±1.5093.32±1.9399.57±0.4399.68±0.3210099.69±0.31
      Road81.60±4.4382.59±6.3591.36±1.5894.90±1.2096.38±2.6597.09±2.8398.12±1.2298.82±1.18
      Trees83.78±1.6990.43±1.2086.79±1.8292.82±1.7997.65±0.8298.06±0.7698.67±0.8898.39±0.36
      Soil62.23±2.2786.78±0.5285.59±1.7183.56±0.8086.95±1.6287.47±1.5289.32±2.0690.98±1.39
      Seawater86.79±2.4884.21±1.2590.75±2.7485.53±1.2391.18±2.8791.88±2.6593.47±2.3094.79±1.17
    • Table 5. Classification results of each class for 700 samples on Recology dataset unit:%

      View table

      Table 5. Classification results of each class for 700 samples on Recology dataset unit:%

      ClasseSVMRandomForestCNNCapsNetResNetDilated-ResNetResCapsNetDCCN
      Building171.78±1.2192.56±2.7898.78±1.2292.29±1.2998.75±1.2598.86±1.1498.06±1.7498.97±0.32
      Building264.54±1.7794.67±3.7596.52±1.4294.45±1.3699.24±0.7699.02±0.9899.46±0.5499.82±0.18
      Building392.78±1.2094.24±1.4494.16±1.2593.47±1.3598.42±1.5898.56±1.4498.41±1.1698.04±0.96
      Building490.39±2.4797.88±0.2497.55±1.3695.16±1.0195.41±1.7297.52±2.3199.67±0.3398.24±1.76
      Building586.26±1.7396.30±2.7797.48±2.3898.06±1.9499.86±0.1499.07±0.9398.72±1.2899.55±0.45
      Building671.52±1.6295.27±1.3694.37±1.0787.47±1.5996.85±2.3497.26±1.0998.35±1.6597.06±2.83
      Building788.37±2.7497.26±2.7497.48±1.9595.86±2.1592.43±2.5395.97±1.7598.79±1.2199.51±0.49
      Trees86.88±1.2495.67±0.2195.64±1.2490.14±0.3597.48±1.8596.47±1.6695.54±1.3197.32±1.55
      Parking Lot62.77±1.9276.21±0.1877.86±1.8783.39±0.1489.45±1.7589.29±1.0689.28±1.2791.31±0.58
      Soil81.83±3.2273.16±0.3273.29±1.7275.41±1.4588.69±2.4790.66±2.5495.68±2.4396.92±3.08
      Grass97.77±1.3798.26±1.2597.26±1.5898.26±1.4292.54±2.4693.48±2.4995.52±2.6199.61±0.39
    • Table 6. Comparison of calculation time for 700 samples on Recology dataset and Bayview Park dataset

      View table

      Table 6. Comparison of calculation time for 700 samples on Recology dataset and Bayview Park dataset

      DatasetNetworkTraintime /sTesttime /sOA /%
      ResNet125.151.8294.51
      Dilated-ResNet195.342.7695.67
      BayviewParkCapsNet99.582.1890.73
      ResCapsNet343.853.0096.42
      DCCN518.653.7597.07
      ResNet196.342.6795.83
      Dilated-ResNet257.982.9896.36
      RecologyCapsNet94.271.3990.26
      ResCapsNet428.693.3496.31
      DCCN586.553.9696.98
    Tools

    Get Citation

    Copy Citation Text

    Aili Wang, Yuxiao Zhang, Haibin Wu, Kaiyuan Jiang, Yuji Iwahori. LiDAR Data Classification Based on Dilated Convolution Capsule Network[J]. Chinese Journal of Lasers, 2021, 48(11): 1110003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Nov. 17, 2020

    Accepted: Jan. 4, 2021

    Published Online: Jun. 4, 2021

    The Author Email: Wu Haibin (woo@hrbust.edu.cn)

    DOI:10.3788/CJL202148.1110003

    Topics