Laser & Optoelectronics Progress, Volume. 56, Issue 21, 212802(2019)
Hyperspectral Image Classification Based on Clustering Dimensionality Reduction and Visual Attention Mechanism
[3] Xie W Y, Li Y S, Hu J et al. Trainable spectral difference learning with spatial starting for hyperspectral image denoising[J]. Neural Networks, 108, 272-286(2018).
[5] Wu K, Xu G, Zhang Y X et al. Hyperspectral image target detection via integrated background suppression with adaptive weight selection[J]. Neurocomputing, 315, 59-67(2018).
[6] Mananze S, Pôças I, Cunha M. Retrieval of maize leaf area index using hyperspectral and multispectral data[J]. Remote Sensing, 10, 1942(2018).
[8] Benediktsson J A, Palmason J A, Sveinsson J R. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 43, 480-491(2005).
[15] Cheng M M. Saliency and similarity detection for image scene analysis[D]. Beijing: Tsinghua University(2012).
[16] Gonzalez R, Woods R E. Digital image processing[M]. USA: Prentice-Hall(2002).
[20] Shen X H, Wu Y. A unified approach to salient object detection via low rank matrix recovery. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 853-860(2012).
Get Citation
Copy Citation Text
Chaoping Zeng, Lijun Ju, Jianchen Zhang. Hyperspectral Image Classification Based on Clustering Dimensionality Reduction and Visual Attention Mechanism[J]. Laser & Optoelectronics Progress, 2019, 56(21): 212802
Category: Remote Sensing and Sensors
Received: Jun. 19, 2019
Accepted: Aug. 5, 2019
Published Online: Nov. 2, 2019
The Author Email: Jianchen Zhang (jczhang@vip.henu.edu.cn)