Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1037003(2024)
Deep Iterative Filter Adaptive Network for Simple Lens Imaging System
[1] Heide F, Rouf M, Hullin M B et al. High-quality computational imaging through simple lenses[J]. ACM Transactions on Graphics, 32, 149(2013).
[2] Liu F, Wu X Q, Zhao L et al. Research progress of wide-field and high-resolution computational optical imaging system[J]. Laser & Optoelectronics Progress, 58, 1811001(2021).
[3] Li W L, Liu Y, Yin X Q et al. A computational photography algorithm for quality enhancement of single lens imaging deblurring[J]. Optik, 126, 2788-2792(2015).
[4] Schuler C J, Hirsch M, Harmeling S, Fitzgibbon A, Lazebnik S, Perona P et al. Blind correction of optical aberrations[M]. Computer vision-ECCV 2012. Lecture notes in computer science, 7574, 187-200(2012).
[5] Di J L, Tang J, Wu J et al. Research progress in the applications of convolutional neural networks in optical information processing[J]. Laser & Optoelectronics Progress, 58, 1600001(2021).
[6] Peng Y, Sun Q, Dun X et al. Learned large field-of-view imaging with thin-plate optics[J]. ACM Transactions on Graphics, 38, 219(2019).
[7] Kupyn O, Martyniuk T, Wu J R et al. DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better[C], 8877-8886(2020).
[8] Zhang H G, Dai Y C, Li H D et al. Deep stacked hierarchical multi-patch network for image deblurring[C], 5971-5979(2020).
[9] Niklaus S, Mai L, Liu F. Video frame interpolation via adaptive convolution[C], 2270-2279(2017).
[10] Niklaus S, Mai L, Liu F. Video frame interpolation via adaptive separable convolution[C], 261-270(2017).
[11] Mildenhall B, Barron J T, Chen J W et al. Burst denoising with kernel prediction networks[C], 2502-2510(2018).
[12] Wang X T, Yu K, Dong C et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C], 606-615(2018).
[13] Su H, Jampani V, Sun D Q et al. Pixel-adaptive convolutional neural networks[C], 11158-11167(2020).
[14] Xu C F, Wu B C, Wang Z N, Vedaldi A, Bischof H, Brox T et al. SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation[M]. Computer vision-ECCV 2020. Lecture notes in computer science, 12373, 1-19(2020).
[15] Zhang J W, Pan J S, Ren J et al. Dynamic scene deblurring using spatially variant recurrent neural networks[C], 2521-2529(2018).
[16] Wu X T, Li J C, Zhou G X et al. RRG-GAN restoring network for simple lens imaging system[J]. Sensors, 21, 3317(2021).
[17] Xu L, Ren J S, Liu C et al. Deep convolutional neural network for image deconvolution[C], 1790-1798(2014).
[18] Lee J Y, Son H, Rim J et al. Iterative filter adaptive network for single image defocus deblurring[C], 2034-2042(2021).
[21] Yuan L, Hou Q B, Jiang Z H et al. VOLO: vision outlooker for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 6575-6586(2023).
[24] Abuolaim A, Brown M S, Vedaldi A, Bischof H, Brox T et al. Defocus deblurring using dual-pixel data[M]. Computer vision-ECCV 2020. Lecture notes in computer science, 12355, 111-126(2020).
[25] Wen F, Ying R D, Liu Y P et al. A simple local minimal intensity prior and an improved algorithm for blind image deblurring[J]. IEEE Transactions on Circuits and Systems for Video Technology, 31, 2923-2937(2021).
[27] Zhang R, Isola P, Efros A A et al. The unreasonable effectiveness of deep features as a perceptual metric[C], 586-595(2018).
[28] Xu L, Jia J Y, Daniilidis K, Maragos P, Paragios N. Two-phase kernel estimation for robust motion deblurring[M]. Computer vision-ECCV 2010. Lecture notes in computer science, 6311, 157-170(2010).
Get Citation
Copy Citation Text
Yi Huang, Tao Xiong. Deep Iterative Filter Adaptive Network for Simple Lens Imaging System[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1037003
Category: Digital Image Processing
Received: Sep. 21, 2023
Accepted: Nov. 1, 2023
Published Online: Apr. 29, 2024
The Author Email: Huang Yi (huang2020bit@163.com)
CSTR:32186.14.LOP232176