Optics and Precision Engineering, Volume. 29, Issue 10, 2504(2021)

Co-segmentation of three-dimensional shape clusters by shape similarity

Jun Yang1、* and Min-min Zhang2
Author Affiliations
  • 1Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou730070, China
  • 2School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
  • show less
    References(32)

    [1] [1] 1孙晓鹏, 李华. 三维网格模型的分割及应用技术综述[J]. 计算机辅助设计与图形学学报, 2005, 17(8): 1647-1655. doi: 10.3321/j.issn:1003-9775.2005.08.001SUNX P, LIH. A survey of 3D mesh model segmentation and application[J]. Journal of Computer Aided Design & Computer Graphics, 2005, 17(8): 1647-1655. (in Chinese). doi: 10.3321/j.issn:1003-9775.2005.08.001

    [2] KIM D I, SUKHATME G S. Semantic labeling of 3D point clouds with object affordance for robot manipulation[C], 5578-5584(2014).

    [3] QI C R, LIU W, WU C X et al. Frustum PointNets for 3D object detection from RGB-D data[C], 918-927(2018).

    [4] [4] 4赵传, 张保明, 余东行, 等. 利用迁移学习的机载激光雷达点云分类[J]. 光学 精密工程, 2019, 27(7): 1601-1612. doi: 10.3788/OPE.20192707.1601ZHAOCH, ZHANGB M, YUD H, et al. Airborne LiDAR point cloud classification using transfer learning[J]. Opt. Precision Eng., 2019, 27(7): 1601-1612. (in Chinese). doi: 10.3788/OPE.20192707.1601

    [5] CHARLES R Q, HAO S, MO K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).

    [6] LI J X, CHEN B M, LEE G H. SO-net: self-organizing network for point cloud analysis[C], 9397-9406(2018).

    [7] LI Y, BU R, SUN M et al. PointCNN: convolution on x-transformed points[C], 820-830(2018).

    [8] LEI H, AKHTAR N, MIAN A. Spherical kernel for efficient graph convolution on 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3664-3680(2021).

    [9] [9] 9赵夫群, 周明全. 层次化点云去噪算法[J]. 光学 精密工程, 2020, 28(7): 1618-1625. doi: 10.37188/OPE.20202807.1618ZHAOF Q, ZHOUM Q. Hierarchical point cloud denoising algorithm[J]. Opt. Precision Eng., 2020, 28(7): 1618-1625. (in Chinese). doi: 10.37188/OPE.20202807.1618

    [10] YAN X, ZHENG C D, LI Z et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C], 5588-5597(2020).

    [11] ESTEVES C, ALLEN-BLANCHETTE C, MAKADIA A et al[M]. Learning SO(3) equivariant representations with spherical CNNs, 54-70(2018).

    [12] ZHANG Z Y, HUA B S, YEUNG S K. ShellNet: efficient point cloud convolutional neural networks using concentric shells statistics[C]. IEEE, 1607-1616(2019).

    [13] HU W, ZHENG A M et al. RGCNN: regularized graph CNN for point cloud segmentation[C], 746-754(2018).

    [14] [14] 14莫堃, 尹周平. 基于3D活动轮廓模型的缺陷点云分割方法[J]. 华中科技大学学报(自然科学版), 2011, 39(1): 82-85.MOK, YINZH P. Segmentation of defective point clouds using 3D active contour model[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(1): 82-85. (in Chinese)

    [15] RUSU R B, MARTON Z C, BLODOW N et al. Towards 3D Point cloud based object maps for household environments[J]. Robotics and Autonomous Systems, 56, 927-941(2008).

    [16] TARSHA-KURDI F, LANDES T, GRUSSENMEVER P. Hough-transform and extended Ransac algorithms for automatic detection of 3D building roof planes from lidar data[C], 407-412(2007).

    [17] MATURANA D, SCHERER S. VoxNet: a 3D Convolutional Neural Network for real-time object recognition[C], 922-928(2015).

    [18] GUERRY J, BOULCH A, LE SAUX B et al. SnapNet-R: consistent 3D multi-view semantic labeling for robotics[C], 669-678(2017).

    [19] QI C R, YI L, SU H et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C], 5099-5108(2017).

    [20] XIE S N, LIU S N, CHEN Z Y et al. Attentional ShapeContextNet for point cloud recognition[C], 4606-4615(2018).

    [21] [21] 21杨军, 党吉圣. 采用深度级联卷积神经网络的三维点云识别与分割[J]. 光学 精密工程, 2020, 28(5): 1187-1199.YANGJ, DANGJ SH. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Opt. Precision Eng., 2020, 28(5): 1187-1199. (in Chinese)

    [22] THOMAS H, QI C R, DESCHAUD J E et al. KPConv: flexible and deformable convolution for point clouds[C]. IEEE, 6410-6419(2019).

    [23] LIN Z H, HUANG S Y, WANG Y C F. Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis[C], 1797-1806(2020).

    [24] WANG Y, SUN Y B, LIU Z W et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38, 1-12(2019).

    [25] LAN S Y, YU R C, YU G et al. Modeling local geometric structure of 3D point clouds using geo-CNN[C], 998-1008(2019).

    [26] DANG J S, YANG J. HPGCNN: hierarchical parallel group convolutional neural networks for point clouds processing[C], 20-37(2021).

    [27] TAO Z Y, ZHU Y X, WEI T et al. Multi-head attentional point cloud classification and segmentation using strictly rotation-invariant representations[J]. IEEE Access, 9, 71133-71144(2021).

    [28] SU H, JAMPANI V, SUN D Q et al. SPLATNet: sparse lattice networks for point cloud processing[C], 2530-2539(2018).

    [29] HU R Z, FAN L B, LIU L G. Co-segmentation of 3D shapes via subspace clustering[J]. Computer Graphics Forum, 31, 1703-1713(2012).

    [30] [30] 30SUNGM, SUH, YUR, et al. Deep functional dictionaries: learning consistent semantic structures on 3D models from functions[EB/OL]. 2018: arXiv: 1805. doi: 10.1299/transjsme.18-0021209957[cs.CV]. https://arxiv.org/abs/1805.09957. doi: 10.1299/transjsme.18-00212

    [31] WANG X G, ZHOU B, WANG Z J et al. Efficiently consistent affinity propagation for 3D shapes co-segmentation[J]. The Visual Computer, 34, 997-1008(2018).

    [32] HU Q Y, YANG B, XIE L H et al. RandLA-net: efficient semantic segmentation of large-scale point clouds[C], 11105-11114(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jun Yang, Min-min Zhang. Co-segmentation of three-dimensional shape clusters by shape similarity[J]. Optics and Precision Engineering, 2021, 29(10): 2504

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Apr. 25, 2021

    Accepted: --

    Published Online: Nov. 23, 2021

    The Author Email: Jun Yang (yangj@mail.lzjtu.cn)

    DOI:10.37188/OPE.20212910.2504

    Topics