Chinese Journal of Ship Research, Volume. 19, Issue 5, 95(2024)
Ship crack detection method based on lightweight fast convolution and bidirectional weighted feature fusion network
[2] [2] YANN L, BENGIO Y, HINTON G. Deep learning [J] Nature, 2015, 521(7553): 436444.
[3] LI Y T, TENG F B, XIAN J H et al. Underwater crack pixel-wise identification and quantification for dams via lightweight semantic segmentation and transfer learning[J]. Automation in Construction, 9, 104600(2022).
[4] DUNG C V, ANH L D. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 99, 52-58(2019).
[6] [6] ZHAO X F, LI S Y. A method of crack detection based on convolutional neural wks[C]Proceedings of the 11th International Wkshop on Structural Health Moniting. Stanfd, CA: DEStech Publications, Inc, 2017.
[7] LI L F, MA W F, LI L et al. Research on detection algorithm for bridge cracks based on deep learning[J]. Acta Automatica Sinica, 45, 1727-1742(2019).
[10] [10] LIN T Y, DOLLAR P, GIRSHICK R , et al. Feature pyra wks f object detection[C]Proceedings of the IEEE 2017 Conference on Computer Vision Pattern Recognition. Honolulu, HI, USA: IEEE, 2017.
[11] [11] LIU S, QI L, QIN H, et al. Path aggregation wk f instance segmentation[C]Proceedings of the 2018 IEEECVF Conference on Computer Vision Pattern Recognition. Salt Lake City, UT, USA : IEEE, 2018: 8759−8768.
[12] [12] TAN M, PANG R, LE Q V. EfficientDet: scalable efficient object detection[C]Proceedings of the 2020 IEEECVF Conference on Computer Vision Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 1078110790.
[13] [13] HOWARD, A G, ZHU M L, CHEN B, et al. Mobiles: efficient convolutional neural wks f mobile vision applications [JOL]. arXiv preprint arXiv. (20170417)[20230607]. https:arxiv.gpdf1704.04861.pdf.
[14] [14] ZHANG X Y, ZHOU X Y, LIN M X, et al. Shuffle: an extremely efficient convolutional neural wk f mobile devices[C]Proceedings of the 2018 IEEECVF Conference on Computer Vision Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 6848−6856.
[15] [15] HAN K, WANG Y H, TIAN Q, et al. Ghost: me features from cheap operations[C]Proceedings of the 2020 IEEE CVF Conference on Computer Vision Pattern Recognition. Seattle, WA, USA : IEEE, 2020: 1580−1589.
[16] [16] LI H L, LI J, WEN H B, et al. Slimneck by GSConv: a better design paradigm of detect architectures f autonomous vehicles[JOL]. arXiv. (20220606)[ 20230607]. https:arxiv.gftparxivpapers22062206.02424.pdf.
[17] [17] CHEN J R, KAO S H, HE H, et al. Run, don''t walk: chasing higher FLOPS f faster neural wks [C]Proceedings of the 2023 IEEECVF Conference on Computer Vision Pattern Recognition. Vancouver, BC, Canada: IEEE, 2023.
[18] [18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, realtime object detection[JOL]. arXiv. (20150608) [20230607]. https:arxiv.gpdf1506.02640.pdf.
[19] [19] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 3−19.
[20] [20] ZHENG Z H, WANG P, LIU W, et al. DistanceIoU loss: Faster better learning f bounding box regression[C]Proceedings of the 34th AAAI Conference on Artificial Intelligence. New Yk Hilton town, New Yk, USA: AAAI Press, 2020, 34(7): 12993−13000.
Get Citation
Copy Citation Text
Chong WANG, Yuhui ZHU. Ship crack detection method based on lightweight fast convolution and bidirectional weighted feature fusion network[J]. Chinese Journal of Ship Research, 2024, 19(5): 95
Category: Ship Structure and Fittings
Received: Jun. 7, 2023
Accepted: --
Published Online: Mar. 14, 2025
The Author Email: