Journal of Synthetic Crystals, Volume. 51, Issue 5, 852(2022)

Research Progress on the Effects of Surface Functionalization of Nanodiamonds

ZHAO Ziwei1,2、*, GAO Xiaowu1,2, CAO Wenxin2, LIU Kang2, DAI Bing2, WANG Yongjie1,2, and ZHU Jiaqi2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(75)

    [1] [1] SCHNEIDER A, STEINMUELLER-NETHL D, ROY M, et al. Enhanced tribological performances of nanocrystalline diamond film[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1): 40-50.

    [2] [2] SAVVIDES N, BELL T J. Hardness and elastic modulus of diamond and diamond-like carbon films[J]. Thin Solid Films, 1993, 228(1/2): 289-292.

    [3] [3] RAO T N, FUJISHIMA A. Recent advances in electrochemistry of diamond[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 384-389.

    [5] [5] ZANG J B, WANG Y H, BIAN L Y, et al. Surface modification and electrochemical behaviour of undoped nanodiamonds[J]. Electrochimica Acta, 2012, 72: 68-73.

    [6] [6] CHAUHAN S, JAIN N, NAGAICH U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: recent updates on in vivo study and patents[J]. Journal of Pharmaceutical Analysis, 2020, 10(1): 1-12.

    [7] [7] EIVAZZADEH-KEIHAN R, MALEKI A, DE LA GUARDIA M, et al. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review[J]. Journal of Advanced Research, 2019, 18: 185-201.

    [8] [8] LIU Y Y, CHANG B M, CHANG H C. Nanodiamond-enabled biomedical imaging[J]. Nanomedicine, 2020, 15(16): 1599-1616.

    [9] [9] TORELLI M D, NUNN N A, SHENDEROVA O A. A perspective on fluorescent nanodiamond bioimaging[J]. Small, 2019, 15(48): 1902151.

    [11] [11] DANILENKO V V. On the history of the discovery of nanodiamond synthesis[J]. Physics of the Solid State, 2004, 46(4): 595-599.

    [12] [12] MOCHALIN V N, SHENDEROVA O, HO D, et al. The properties and applications of nanodiamonds[J]. Nature Nanotechnology, 2012, 7(1): 11-23.

    [13] [13] DUAN X G, TIAN W J, ZHANG H Y, et al. sp2/sp3 framework from diamond nanocrystals: a key bridge of carbonaceous structure to carbocatalysis[J]. ACS Catalysis, 2019, 9(8): 7494-7519.

    [14] [14] OSSWALD S, YUSHIN G, MOCHALIN V, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air[J]. Journal of the American Chemical Society, 2006, 128(35): 11635-11642.

    [15] [15] KRUEGER A, LANG D. Functionality is key: recent progress in the surface modification of nanodiamond[J]. Advanced Functional Materials, 2012, 22(5): 890-906.

    [16] [16] KRUEGER A. The structure and reactivity of nanoscale diamond[J]. Journal of Materials Chemistry, 2008, 18(13): 1485.

    [20] [20] ULLAH M, KAUSAR A, SIDDIQ M, et al. Reinforcing effects of modified nanodiamonds on the physical properties of polymer-based nanocomposites: a review[J]. Polymer-Plastics Technology and Engineering, 2015, 54(8): 861-879.

    [21] [21] SHAKUN A, VUORINEN J, HOIKKANEN M, et al. Hard nanodiamonds in soft rubbers: past, present and future-a review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 49-69.

    [22] [22] LIU Y, GU Z N, MARGRAVE J L, et al. Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives[J]. Chemistry of Materials, 2004, 16(20): 3924-3930.

    [23] [23] KHABASHESKU V N, MARGRAVE J L, BARRERA E V. Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 859-866.

    [24] [24] WANG Y H, HUANG H, ZANG J B, et al. Electrochemical behavior of fluorinated and aminated nanodiamond[J]. International Journal of Electrochemical Science, 2012, 7(8): 6807-6815.

    [25] [25] NEITZEL I, MOCHALIN V N, NIU J, et al. Maximizing Young's modulus of aminated nanodiamond-epoxy composites measured in compression[J]. Polymer, 2012, 53(25): 5965-5971.

    [26] [26] GOGOTSI Y. Nanomaterials Handbook[M]. Boca Raton: CRC Press, 2006.

    [27] [27] MOCHALIN V N, GOGOTSI Y. Nanodiamond-polymer composites[J]. Diamond and Related Materials, 2015, 58: 161-171.

    [28] [28] ASHASSI-SORKHABI H, ES’HAGHI M. Corrosion protection of mild steel by nano-colloidal polyaniline/nanodiamond composite coating in NaCl solution[J]. Journal of Coatings Technology and Research, 2014, 11(3): 371-380.

    [29] [29] ASHASSI-SORKHABI H, BAGHERI R, REZAEI-MOGHADAM B. Corrosion protection properties of PPy-ND composite coating: sonoelectrochemical synthesis and design of experiment[J]. Journal of Materials Engineering and Performance, 2016, 25(2): 611-622.

    [30] [30] ROUMELI E, PAVLIDOU E, AVGEROPOULOS A, et al. Factors controlling the enhanced mechanical and thermal properties of nanodiamond-reinforced cross-linked high density polyethylene[J]. The Journal of Physical Chemistry B, 2014, 118(38): 11341-11352.

    [31] [31] MORIMUNE-MORIYA S, YADA S, KUROKI N, et al. Strong reinforcement effects of nanodiamond on mechanical and thermal properties of polyamide 66[J]. Composites Science and Technology, 2020, 199: 108356.

    [32] [32] KIM S H, RHEE K Y, PARK S J. Amine-terminated chain-grafted nanodiamond/epoxy nanocomposites as interfacial materials: thermal conductivity and fracture resistance[J]. Composites Part B: Engineering, 2020, 192: 107983.

    [33] [33] BEHLER K D, STRAVATO A, MOCHALIN V, et al. Nanodiamond-polymer composite fibers and coatings[J]. ACS Nano, 2009, 3(2): 363-369.

    [34] [34] MORIMUNE S, KOTERA M, NISHINO T, et al. Poly(vinyl alcohol) nanocomposites with nanodiamond[J]. Macromolecules, 2011, 44(11): 4415-4421.

    [35] [35] JEE A Y, LEE M. Thermal and mechanical properties of alkyl-functionalized nanodiamond composites[J]. Current Applied Physics, 2011, 11(5): 1183-1187.

    [36] [36] MORIMUNE-MORIYA S, SALAJKOVA M, ZHOU Q, et al. Reinforcement effects from nanodiamond in cellulose nanofibril films[J]. Biomacromolecules, 2018, 19(7): 2423-2431.

    [37] [37] JEE A Y, LEE M. Mechanical properties of polycarbonate and poly(methyl methacrylate) films reinforced with surface-functionalized nanodiamonds[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(1): 533-536.

    [38] [38] ZHAO X X, WANG T, LI Y Y, et al. Polydimethylsiloxane/nanodiamond composite sponge for enhanced mechanical or wettability performance[J]. Polymers, 2019, 11(6): 948.

    [39] [39] MOCHALIN V N, NEITZEL I, ETZOLD B J M, et al. Covalent incorporation of aminated nanodiamond into an epoxy polymer network[J]. ACS Nano, 2011, 5(9): 7494-7502.

    [40] [40] NEITZEL I, MOCHALIN V, KNOKE I, et al. Mechanical properties of epoxy composites with high contents of nanodiamond[J]. Composites Science and Technology, 2011, 71(5): 710-716.

    [41] [41] WANG Q, ZHANG J, SHI W, et al. Coordinating mechanical performance and fire safety of epoxy resin via functionalized nanodiamond[J]. Diamond and Related Materials, 2020, 108: 107964.

    [42] [42] ZHANG Q X, NAITO K, TANAKA Y, et al. Grafting polyimides from nanodiamonds[J]. Macromolecules, 2008, 41(3): 536-538.

    [43] [43] KHAN M, HAMID A, LI T H, et al. Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites[J]. Diamond and Related Materials, 2020, 107: 107897.

    [44] [44] YANG J H, WANG D E, HAN H X, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1900-1909.

    [45] [45] SU L X, CAO Y, HAO H S, et al. Emerging applications of nanodiamonds in photocatalysis[J]. Functional Diamond, 2021, 1(1): 93-109.

    [46] [46] BAGHERI S, MUHD JULKAPLI N. Nano-diamond based photocatalysis for solar hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31538-31554.

    [47] [47] DU H, LIU Y N, SHEN C C, et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2017, 38(8): 1295-1306.

    [48] [48] LV X W, WENG C C, YUAN Z Y. Ambient ammonia electrosynthesis: current status, challenges, and perspectives[J]. ChemSusChem, 2020, 13(12): 3061-3078.

    [49] [49] ZHU D, ZHANG L H, RUTHER R E, et al. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction[J]. Nature Materials, 2013, 12(9): 836-841.

    [50] [50] KRAINSKY I L, ASNIN V M. Negative electron affinity mechanism for diamond surfaces[J]. Applied Physics Letters, 1998, 72(20): 2574-2576.

    [51] [51] ZHU D, BANDY J A, LI S, et al. Amino-terminated diamond surfaces: photoelectron emission and photocatalytic properties[J]. Surface Science, 2016, 650: 295-301.

    [52] [52] ZHANG L H, ZHU D, NATHANSON G M, et al. Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons[J]. Angewandte Chemie International Edition, 2014, 53(37): 9746-9750.

    [53] [53] ZHANG L H, HAMERS R J. Photocatalytic reduction of CO2 to CO by diamond nanoparticles[J]. Diamond and Related Materials, 2017, 78: 24-30.

    [54] [54] JANG D M, MYUNG Y, IM H S, et al. Nanodiamonds as photocatalysts for reduction of water and graphene oxide[J]. Chemical Communications (Cambridge, England), 2012, 48(5): 696-698.

    [55] [55] KHAN M, HAYAT A, BABURAO MANE S K, et al. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29070-29081.

    [56] [56] LIN Z Y, XIAO J, LI L H, et al. Nanodiamond-embedded p-type copper (Ⅰ) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(4): 1501865.

    [58] [58] PAN J J, GUO F, SUN H R, et al. Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity[J]. Journal of Materials Science, 2021, 56(11): 6663-6675.

    [59] [59] HUNGE Y M, YADAV A A, KHAN S, et al. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination[J]. Journal of Colloid and Interface Science, 2021, 582: 1058-1066.

    [60] [60] SU L X, LIU Z Y, YE Y L, et al. Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19805-19815.

    [61] [61] PASTRANA-MARTNEZ L M, MORALES-TORRES S, CARABINEIRO S A C, et al. Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation[J]. Applied Surface Science, 2018, 458: 839-848.

    [62] [62] CHENG C Y, PEREVEDENTSEVA E, TU J S, et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling[J]. Applied Physics Letters, 2007, 90(16): 163903.

    [63] [63] CHAO J I, PEREVEDENTSEVA E, CHUNG P H, et al. Nanometer-sized diamond particle as a probe for biolabeling[J]. Biophysical Journal, 2007, 93(6): 2199-2208.

    [64] [64] HEBISCH E, HJORT M, VOLPATI D, et al. Nanostraw-assisted cellular injection of fluorescent nanodiamonds via direct membrane opening[J]. Small, 2021, 17(7): 2006421.

    [65] [65] LIU K K, WANG C C, CHENG C L, et al. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells[J]. Biomaterials, 2009, 30(26): 4249-4259.

    [66] [66] SIMPSON D A, MORRISROE E, MCCOEY J M, et al. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping[J]. ACS Nano, 2017, 11(12): 12077-12086.

    [67] [67] IGARASHI R, SUGI T, SOTOMA S, et al. Tracking the 3D rotational dynamics in nanoscopic biological systems[J]. Journal of the American Chemical Society, 2020, 142(16): 7542-7554.

    [68] [68] MILLER B S, BEZINGE L, GLIDDON H D, et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics[J]. Nature, 2020, 587(7835): 588-593.

    [69] [69] HENS S C, CUNNINGHAM G, TYLER T, et al. Nanodiamond bioconjugate probes and their collection by electrophoresis[J]. Diamond and Related Materials, 2008, 17(11): 1858-1866.

    [70] [70] MKANDAWIRE M, POHL A, GUBAREVICH T, et al. Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells[J]. Journal of Biophotonics, 2009, 2(10): 596-606.

    [71] [71] ZHAO L, XU Y H, QIN H M, et al. Platinum on nanodiamond: a promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug[J]. Advanced Functional Materials, 2014, 24(34): 5348-5357.

    [72] [72] XING Y, XIONG W, ZHU L, et al. DNA damage in embryonic stem cells caused by nanodiamonds[J]. ACS Nano, 2011, 5(3): 2376-2384.

    [73] [73] ZHANG X Y, HU W B, LI J, et al. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond[J]. Toxicology Research, 2012, 1(1): 62-68.

    [74] [74] GUAN B, ZOU F, ZHI J F. Nanodiamond as the pH-responsive vehicle for an anticancer drug[J]. Small, 2010, 6(14): 1514-1519.

    [75] [75] GAO G Y, LIU R Z, GUO Q Y, et al. The effect of carboxylated nanodiamonds on tumor cells migration[J]. Diamond and Related Materials, 2020, 105: 107809.

    [76] [76] GUO Q Y, LI L, GAO G Y, et al. Nanodiamonds inhibit cancer cell migration by strengthening cell adhesion: implications for cancer treatment[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9620-9629.

    [77] [77] WU Y Z, ERMAKOVA A, LIU W N, et al. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds[J]. Advanced Functional Materials, 2015, 25(42): 6576-6585.

    [78] [78] QIN S R, ZHAO Q, CHENG Z G, et al. Rare earth-functionalized nanodiamonds for dual-modal imaging and drug delivery[J]. Diamond and Related Materials, 2019, 91: 173-182.

    [80] [80] AKHTAR N, AKRAM M, ASIF H M, et al. Gene therapy: a review article[J]. Journal of Medicinal Plant Research, 2011, 5(18): 1812-1817.

    [81] [81] LIM D G, RAJASEKARAN N, LEE D, et al. Polyamidoamine-decorated nanodiamonds as a hybrid gene delivery vector and siRNA structural characterization at the charged interfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31543-31556.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Ziwei, GAO Xiaowu, CAO Wenxin, LIU Kang, DAI Bing, WANG Yongjie, ZHU Jiaqi. Research Progress on the Effects of Surface Functionalization of Nanodiamonds[J]. Journal of Synthetic Crystals, 2022, 51(5): 852

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 2, 2022

    Accepted: --

    Published Online: Jul. 7, 2022

    The Author Email: Ziwei ZHAO (zhaozw123@163.com)

    DOI:

    CSTR:32186.14.

    Topics