Chinese Journal of Lasers, Volume. 51, Issue 1, 0121002(2024)
Research History and Prospects of Coherent Beam Combining of Fiber Lasers: From Perspective of Citations (Invited)
[1] Brignon A[M]. Coherent laser beam combining(2013).
[2] Zhou P, Su R T, Ma Y X et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).
[3] Morel J, Woodtli A, Dändliker R. Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of an intracavity phase grating[J]. Optics Letters, 18, 1520-1522(1993).
[4] Wu J, Ma Y X, Ma P F et al. Fiber laser coherent synthesis 20 kW high power output[J]. Infrared and Laser Engineering, 50, 20210621(2021).
[5] Chang Q, Gao Z Q, Deng Y et al. Coherent beam combining of fiber laser breaks through thousands of channels under strong noise[J]. Chinese Journal of Lasers, 50, 0616001(2023).
[6] Zhou P, Su R T, Ma Y X et al. Coherent beam combining of fiber lasers by actively phase control[J]. Acta Optica Sinica, 43, 1700001(2023).
[7] Zhou P, He B. Preface to the column “fiber laser beam synthesis”[J]. Infrared and Laser Engineering, 47, I0003(2018).
[8] Li X Y, Zhou P. Special issue on laser beam combining technology[J]. High Power Laser and Particle Beams, 35, 041000(2023).
[10] Lyndin N M, Sychugov V A, Tikhomirov A E et al. Laser system composed of several active elements connected by single-mode couplers[J]. Quantum Electronics, 24, 1058-1061(1994).
[11] Kozlov V A, Hernández-Cordero J, Morse T F. All-fiber coherent beam combining of fiber lasers[J]. Optics Letters, 24, 1814-1816(1999).
[12] Shirakawa A, Saitou T, Sekiguchi T et al. Coherent addition of fiber lasers by use of a fiber coupler[J]. Optics Express, 10, 1167-1172(2002).
[13] Sabourdy D, Kermene V, Desfarges-Berthelemot A et al. Efficient coherent combining of widely tunable fiber lasers[J]. Optics Express, 11, 87-97(2003).
[14] McManamon P F, Thompson W. Phased array of phased arrays (PAPA) laser systems architecture[J]. Fiber and Integrated Optics, 22, 79-88(2003).
[15] Anderegg J, Brosnan S J, Weber M E et al. 8-W coherently phased 4-element fiber array[J]. Proceedings of SPIE, 4974, 1-6(2003).
[16] Augst S J, Fan T Y, Sanchez A. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers[J]. Optics Letters, 29, 474-476(2004).
[17] Jones D C, Scott A M, Clark S et al. Beam steering of a fiber-bundle laser output using phased array techniques[J]. Proceedings of SPIE, 5335, 125-131(2004).
[18] Wickham M, Anderegg J, Brosnan S et al. Coherently coupled high power fiber arrays[C], 23-24(2006).
[19] Anderegg J, Brosnan S, Cheung E et al. Coherently coupled high power fiber arrays[J]. Proceedings of SPIE, 6102, 61020U(2006).
[20] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 22, 907-909(1997).
[21] Liu L, Vorontsov M A. Phase-locking of tiled fiber array using SPGD feedback controller[J]. Proceedings of SPIE, 5895, 58950P(2005).
[22] Liu L, Vorontsov M A, Polnau E et al. Adaptive phase-locked fiber array with wavefront phase tip-tilt compensation using piezoelectric fiber positioners[J]. Proceedings of SPIE, 6708, 67080K(2007).
[23] Vorontsov M A, Lachinova S L. Laser beam projection with adaptive array of fiber collimators. I. Basic considerations for analysis[J]. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 25, 1949-1959(2008).
[24] Vorontsov M A, Weyrauch T, Beresnev L A et al. Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 269-280(2009).
[25] Zhou P, Liu Z J, Wang X L et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 248-256(2009).
[26] Shay T M, Benham V, Spring J et al. Self-referenced locking of optical coherence by single-detector electronic-frequency tagging[J]. Proceedings of SPIE, 6102, 61020V(2006).
[27] Shay T M, Benham V, Baker J T et al. First experimental demonstration of self-synchronous phase locking of an optical array[J]. Optics Express, 14, 12015-12021(2006).
[28] Shay T M, Benham V, Baker J T et al. Self-synchronous and self-referenced coherent beam combination for large optical arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 480-486(2007).
[29] Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 14, 12188-12195(2006).
[30] Shay T M, Baker J T, Sanchez A D et al. High-power phase locking of a fiber amplifier array[J]. Proceedings of SPIE, 7195, 71951M(2009).
[31] Yu C X, Kansky J E, Shaw S E J et al. Coherent beam combining of large number of PM fibres in 2-D fibre array[J]. Electronics Letters, 42, 1024-1025(2006).
[32] Xiao R, Hou J, Jiang Z F et al. Experimental research of coherent combining of three fiber amplifiers[J]. Acta Physica Sinica, 55, 6464-6469(2006).
[33] Xiao R, Hou J, Liu M et al. Coherent combining technology of master oscillator power amplifier fiber arrays[J]. Optics Express, 16, 2015-2022(2008).
[34] Zhou P. Study on coherent beam combination technology of fiber lasers[D](2009).
[35] Zhou P, Liu Z J, Wang X L et al. Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm[J]. Applied Physics Letters, 94, 231106(2009).
[36] Zheng Y, Wang X H, Shen F et al. Generation of dark hollow beam via coherent combination based on adaptive optics[J]. Optics Express, 18, 26946-26958(2010).
[37] Zheng Y, Wang X H, Deng L et al. Arbitrary phasing technique for two-dimensional coherent laser array based on an active segmented mirror[J]. Applied Optics, 50, 2239-2245(2011).
[38] Zheng Y, Wang X H, Shen F et al. Tip-tilt correction and coherent combination of seven-channel laser array based on active segmented mirrors[J]. Chinese Journal of Lasers, 38, 0802009(2011).
[39] Fan X Y, Liu J J, Liu J S et al. Experimental investigation of a seven-element hexagonal fiber coherent array[J]. Chinese Optics Letters, 8, 48-51(2010).
[40] Bellanger C, Toulon B, Primot J et al. Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining[J]. Optics Letters, 35, 3931-3933(2010).
[41] Ma Y X, Zhou P, Wang X L et al. Coherent beam combination with single frequency dithering technique[J]. Optics Letters, 35, 1308-1310(2010).
[42] Ma Y X, Zhou P, Wang X L et al. Active phase locking of fiber amplifiers using sine-cosine single-frequency dithering technique[J]. Applied Optics, 50, 3330-3336(2011).
[43] Cheung E C, Ho J G, Goodno G D et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 33, 354-356(2008).
[44] Uberna R, Bratcher A, Tiemann B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Applied Optics, 49, 6762-6725(2010).
[45] Seise E, Klenke A, Limpert J et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Optics Express, 18, 27827-27835(2010).
[46] Uberna R, Bratcher A, Alley T G et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 18, 13547-13553(2010).
[47] Vorontsov M A, Lachinova S L, Beresnev L A et al. Obscuration-free pupil-plane phase locking of a coherent array of fiber collimators[J]. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 27, A106-A121(2010).
[48] Beresnev L A, Vorontsov M A, Weyrauch T et al. Experimental study of phase locking of fiber collimators using internal beam-tail interference[J]. Proceedings of SPIE, 7914, 79142Z(2011).
[49] Daniault L, Hanna M, Lombard L et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 36, 621-623(2011).
[50] Yan Y F, Tao R M, Li H K et al. Study of high power CBC fiber laser systems with non-equal splitting ratio beam-splitters[J]. Results in Optics, 10, 100368(2023).
[51] Jolivet V, Bourdon P, Bennai B et al. Beam shaping of single-mode and multimode fiber amplifier arrays for propagation through atmospheric turbulence[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 257-268(2009).
[52] Dikmelik Y, Davidson F M. Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence[J]. Applied Optics, 44, 4946-4952(2005).
[53] Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 18, 8540-8555(2010).
[54] Lombard L, Azarian A, Cadoret K et al. Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime[J]. Optics Letters, 36, 523-525(2011).
[55] Kurti R S, Halterman K, Shori R K et al. Discrete cylindrical vector beam generation from an array of optical fibers[J]. Optics Express, 17, 13982-13988(2009).
[56] Ma Y X, Wang X L, Leng J Y et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 36, 951-953(2011).
[57] Yu C X, Augst S J, Redmond S M et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 36, 2686-2688(2011).
[58] Goodno G D, McNaught S J, Rothenberg J E et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 35, 1542-1544(2010).
[59] Anderson B, Flores A, Holten R et al. Comparison of phase modulation schemes for coherently combined fiber amplifiers[J]. Optics Express, 23, 27046-27060(2015).
[60] Klenke A, Seise E, Demmler S et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy[J]. Optics Express, 19, 24280-24285(2011).
[61] Bourderionnet J, Bellanger C, Primot J et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 19, 17053-17058(2011).
[62] Weyrauch T, Vorontsov M A, Carhart G W et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 36, 4455-4457(2011).
[63] Manzoni C, Mücke O D, Cirmi G et al. Coherent pulse synthesis: towards sub-cycle optical waveforms[J]. Laser & Photonics Reviews, 9, 129-171(2015).
[64] Kienel M, Müller M, Klenke A et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 41, 3343-3346(2016).
[65] Klenke A, Seise E, Limpert J et al. Basic considerations on coherent combining of ultrashort laser pulses[J]. Optics Express, 19, 25379-25387(2011).
[66] Siiman L A, Chang W Z, Zhou T et al. Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers[J]. Optics Express, 20, 18097-18116(2012).
[67] Su R T, Zhou P, Wang X L et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array[J]. Optics Letters, 37, 3978-3980(2012).
[68] Klenke A, Breitkopf S, Kienel M et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 38, 2283-2285(2013).
[69] Chang W Z, Zhou T, Siiman L A et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 21, 3897-3910(2013).
[70] Guichard F, Hanna M, Lombard L et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 38, 5430-5433(2013).
[71] Klenke A, Hädrich S, Eidam T et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Optics Letters, 39, 6875-6878(2014).
[72] Ma P F, Tao R M, Wang X L et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Optics Express, 22, 4123-4130(2014).
[73] Müller M, Kienel M, Klenke A et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 41, 3439-3442(2016).
[74] Thielen P A, Ho J G, Burchman D A et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Optics Letters, 37, 3741-3743(2012).
[75] Redmond S M, Ripin D J, Yu C X et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 37, 2832-2834(2012).
[76] McNaught S J, Thielen P A, Adams L N et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0901008(2014).
[77] Ma P F, Wang X L, Su R T et al. Coherent polarization beam combining of fiber lasers to 2 kW power-level[J]. High Power Laser and Particle Beams, 28, 040102(2016).
[78] Flores A, Dajani I, Holten R H et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 55, 096101(2016).
[79] Antier M, Bourderionnet J, Larat C et al. kHz closed loop interferometric technique for coherent fiber beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0901506(2014).
[80] Azarian A, Bourdon P, Lombard L et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Applied Optics, 53, 1493-1502(2014).
[81] Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 23, 12407-12413(2015).
[82] Kabeya D, Kermene V, Fabert M et al. Active coherent combining of laser beam arrays by means of phase-intensity mapping in an optimization loop[J]. Optics Express, 23, 31059-31068(2015).
[83] Huang Z M, Tang X, Luo Y Q et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. The Review of Scientific Instruments, 87, 033109(2016).
[84] Su R T, Zhang Z X, Zhou P et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photonics Technology Letters, 28, 2585-2588(2016).
[85] Goodno G D, Shih C C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 18, 25403-25414(2010).
[86] Goodno G D, McNaught S J, Weber M E et al. Multichannel polarization stabilization for coherently combined fiber laser arrays[J]. Optics Letters, 37, 4272-4274(2012).
[87] Goodno G D, Weiss S B. Automated co-alignment of coherent fiber laser arrays via active phase-locking[J]. Optics Express, 20, 14945-14953(2012).
[88] Weiss S B, Weber M E, Goodno G D. Group delay locking of coherently combined broadband lasers[J]. Optics Letters, 37, 455-457(2012).
[89] Müller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).
[90] Wang X, Wang X L, Zhou P et al. 350-W coherent beam combining of fiber amplifiers with tilt-tip and phase-locking control[J]. IEEE Photonics Technology Letters, 24, 1781-1784(2012).
[91] Geng C, Luo W, Tan Y et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Optics Express, 21, 25045-25055(2013).
[92] Chosrowjan H, Furuse H, Fujita M et al. Interferometric phase shift compensation technique for high-power, tiled-aperture coherent beam combination[J]. Optics Letters, 38, 1277-1279(2013).
[94] Wang H H, Lin L X, Ye X et al. Status and development trend of overseas new type electric drive high-energy laser technology[J]. Infrared and Laser Engineering, 52, 20220283(2023).
[96] Mourou G, Brocklesby B, Tajima T et al. The future is fibre accelerators[J]. Nature Photonics, 7, 258-261(2013).
[97] Lubin P, Hughes G B, Bible J J et al. Directed energy planetary defense[J]. Proceedings of SPIE, 8876, 887602(2013).
[100] Atwater H A, Davoyan A R, Ilic O et al. Materials challenges for the Starshot lightsail[J]. Nature Materials, 17, 861-867(2018).
[101] Materials N. Extreme light[J]. Nature Materials, 15, 1(2016).
[102] Fsaifes I, Daniault L, Bellanger S et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 28, 20152-20161(2020).
[103] Chang H X, Chang Q, Xi J C et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 8, 1943-1948(2020).
[104] Chang Q, Hou T Y, Long J H et al. Experimental phase stabilization of a 397-channel laser beam array via image processing in dynamic noise environment[J]. Journal of Lightwave Technology, 40, 6542-6547(2022).
[105] Du Q, Wang D, Zhou T et al. 81-beam coherent combination using a programmable array generator[J]. Optics Express, 29, 5407-5418(2021).
[106] Shpakovych M, Maulion G, Kermene V et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 29, 12307-12318(2021).
[107] Liu Z J, Zhou P, Ma P F et al. 4-channel polarize coherent combination of high-power narrow-linewidth linear polarization fiber amplifiers with 5 kW high intensity laser output[J]. Chinese Journal of Lasers, 44, 0415004(2017).
[108] Müller M, Klenke A, Steinkopff A et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 43, 6037-6040(2018).
[109] Shekel E, Vidne Y, Urbach B. 16 kW single mode CW laser with dynamic beam for material processing[J]. Proceedings of SPIE, 11260, 1126021(2020).
[110] Ma P F, Chang H X, Ma Y X et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 140, 107016(2021).
[111] Stark H, Buldt J, Müller M et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 44, 5529-5532(2019).
[112] Stark H, Benner M, Buldt J et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 48, 3007-3010(2023).
[113] Stark H, Buldt J, Müller M et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 46, 969-972(2021).
[114] Chen S Y, Zhou T, Du Q et al. Broadband spectral combining of three pulse-shaped fiber amplifiers with 42 fs compressed pulse duration[J]. Optics Express, 31, 12717-12724(2023).
[115] Rouzé B, Lombard L, Jacqmin H et al. Coherent beam combination of seven 1.5 µm fiber amplifiers through up to 1 km atmospheric turbulence: near- and far-field experimental analysis[J]. Applied Optics, 60, 8524-8533(2021).
[116] Björck M, Henriksson M, Sjöqvist L. Outdoor target-in-the-loop coherent beam combination using a stochastic parallel gradient descent algorithm[J]. Proceedings of SPIE, 11867, 118670E(2021).
[117] Li F, Zou F, Jiang J L et al. Target-in-loop coherent beam combining of a 57-aperture fiber laser array over 2 km in atmosphere based on an adaptive optical system[J]. Chinese Journal of Lasers, 49, 0616002(2022).
[118] Zhi D, Hou T Y, Ma P F et al. Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology[J]. High Power Laser Science and Engineering, 7, e33(2019).
[119] Veinhard M, Bellanger S, Daniault L et al. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser[J]. Optics Letters, 46, 25-28(2021).
[120] Wang X B, Liu C B, Cao Y et al. High-precision two-dimensional beam steering with a 64-element optical fiber phased array[J]. Applied Optics, 60, 10002-10008(2021).
[121] Andrianov A, Kalinin N, Anashkina E et al. Highly efficient coherent beam combining of tiled aperture arrays using out-of-phase pattern[J]. Optics Letters, 45, 4774-4777(2020).
[122] Prossotowicz M, Flamm D, Heimes A et al. Dynamic focus shaping with mixed-aperture coherent beam combining[J]. Optics Letters, 46, 1660-1663(2021).
[123] Prossotowicz M, Heimes A, Flamm D et al. Coherent beam combining with micro-lens arrays[J]. Optics Letters, 45, 6728-6731(2020).
[124] Fsaifes I, Ranély-Vergé-Dépré C A, Veinhard M et al. Far field energy distribution control using a coherent beam combining femtosecond digital laser[J]. Optics Express, 31, 8217-8225(2023).
[125] Tünnermann H, Shirakawa A. AI controlled tiled aperture coherent beam combining[C](2019).
[126] Mills B, Grant-Jacob J A, Praeger M et al. Single step phase optimisation for coherent beam combination using deep learning[J]. Scientific Reports, 12, 5188(2022).
[127] Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications[J]. Optics Express, 27, 24223-24230(2019).
[128] Shpakovych M, Maulion G, Boju A et al. On-demand phase control of a 7-fiber amplifiers array with neural network and quasi-reinforcement learning[J]. Photonics, 9, 243(2022).
[129] Jia H L, Zuo J, Bao Q L et al. Discussion on piston-type phase ambiguity in a coherent beam combining system[J]. Photonics, 9, 49(2022).
[130] Jia H L, Zuo J, Bao Q L et al. A phase-error prediction method for coherent beam combining via convolutional neural network[J]. Optik, 246, 167827(2021).
[131] Hou T Y, An Y, Chang Q et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 7, e59(2019).
[132] Mirigaldi A, Carbone M, Perrone G. Non-uniform adaptive angular spectrum method and its application to neural network assisted coherent beam combining[J]. Optics Express, 29, 13269-13287(2021).
[133] Hou T Y, An Y, Chang Q et al. Deep-learning-based coherent fiber laser array system for power scaling and spatial light structuring[J]. Proceedings of SPIE, 11981, 119810F(2022).
[134] Wang D, Du Q, Zhou T et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 29, 5694-5709(2021).
[135] Li X Z, Peng C, Liang X Y. Far-field phasing method based on deep learning for tiled-aperture coherent beam combination[J]. Optics Communications, 527, 128928(2023).
[136] Liu R Q, Peng C, Liang X Y et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning[J]. Chinese Optics Letters, 18, 041402(2020).
[137] Zhang X, Li P X, Zhu Y C et al. Coherent beam combination based on Q-learning algorithm[J]. Optics Communications, 490, 126930(2021).
[138] Wang D, Du Q, Zhou T et al. Machine learning pattern recognition algorithm with applications to coherent laser combination[J]. IEEE Journal of Quantum Electronics, 58, 6100309(2022).
[139] Wang D, Leng Y X. Simultaneous wavefront sensing of multiple beams using neural networks[J]. Applied Physics B, 128, 8(2021).
[140] Du Q, Wang D, Zhou T et al. Experimental beam combining stabilization using machine learning trained while phases drift[J]. Optics Express, 30, 12639-12653(2022).
[141] Gao Z Q, Chang Q, Liu H Y et al. Research progress and development trend of machine learning in phase control of fiber laser arrays[J]. Chinese Journal of Lasers, 50, 1101010(2023).
[142] Du Q, Zhou T, Doolittle L R et al. Deterministic stabilization of eight-way 2D diffractive beam combining using pattern recognition[J]. Optics Letters, 44, 4554-4557(2019).
[143] Odier A, Durécu A, Melkonian J M et al. Coherent combining of second-harmonic generators by active phase control of the fundamental waves[J]. Optics Letters, 42, 3201-3204(2017).
[144] Želudevičius J, Regelskis K, Račiukaitis G. Experimental demonstration of pulse multiplexing and beam combining of four fiber lasers by noncollinear frequency conversion in an LBO crystal[J]. Optics Letters, 42, 175-178(2017).
[145] Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 42, 3255-3258(2017).
[146] Odier A, Chtouki R, Bourdon P et al. Coherent combining of mid-infrared difference frequency generators[J]. Optics Letters, 44, 566-569(2019).
[147] Odier A, Durécu A, Melkonian J M et al. Coherent combining of fiber-laser-pumped 3.4 μm frequency converters[J]. Proceedings of SPIE, 10083, 1008319(2017).
[148] Feng L W, Wang X J, Ke W W. Coherent beam combining of optical parametric oscillators[J]. Journal of the Optical Society of America B: Optical Physics, 34, 991-997(2017).
[150] Albrodt P, Jamal M T, Hansen A K et al. Coherent combining of high brightness tapered amplifiers for efficient non-linear conversion[J]. Optics Express, 27, 928-937(2019).
[151] Liu Q, Janicot S, Georges P et al. Coherent combination of micropulse tapered amplifiers at 828 nm for direct-detection LIDAR applications[J]. Optics Letters, 48, 489-492(2023).
[152] Billaud A, Gomez F, Allioux D et al. Optimal coherent beam combining based on multi-plane light conversion for high throughput optical feeder links[C](2019).
[153] Rouzé B, Pichon P, Gay M et al. Experimental study of the impact of carrying a telecom signal on LOCSET-based coherent beam combining[J]. Optics Express, 31, 26552-26564(2023).
[154] Billault V, Leveque S, Maho A et al. Optical coherent combining of high-power optical amplifiers for free-space optical communications[J]. Optics Letters, 48, 3649-3652(2023).
[155] Zou F, Pan Z T, Liu J Y et al. Turbulence compensation for receiving and coherent combining via phased fiber laser array[J]. IEEE Photonics Technology Letters, 35, 733-736(2023).
[156] Zou F, Pan Z T, Liu J Y et al. Bidirectional coherent beam combining and turbulence mitigating by phased fiber laser array in a 2 km atmospheric link[J]. Optics & Laser Technology, 163, 109311(2023).
[157] Buldt J, Stark H, Müller M et al. Gas-plasma-based generation of broadband terahertz radiation with 640 mW average power[J]. Optics Letters, 46, 5256-5259(2021).
[158] Yan Y F, Liu Y, Zhang H Y et al. Principle and numerical demonstration of high power all-fiber coherent beam combination based on self-imaging effect in a square core fiber[J]. Photonics Research, 10, 444-455(2022).
[159] Vysotsky D V, Napartovich A P. Coherent beam combining in optically coupled laser arrays[J]. Quantum Electronics, 49, 989-1007(2019).
[160] Steinkopff A, Jauregui C, Aleshire C et al. Optimizing the design of coherently combined multicore fiber amplifiers[J]. Proceedings of SPIE, 11665, 116651Q(2021).
[161] Otto H J, Klenke A, Jauregui C et al. Scaling the mode instability threshold with multicore fibers[J]. Optics Letters, 39, 2680-2683(2014).
[162] Klenke A, Müller M, Stark H et al. Coherently combined 16-channel multicore fiber laser system[J]. Optics Letters, 43, 1519-1522(2018).
[163] Klenke A, Steinkopff A, Aleshire C et al. 500 W rod-type 4×4 multicore ultrafast fiber laser[J]. Optics Letters, 47, 345-348(2022).
[164] Klenke A, Bahri M, Steinkopff A et al. 49-core rod-type ytterbium-doped multicore fiber for high power operation[J]. Proceedings of SPIE, 12400, 124000Y(2023).
[165] Klenke A, Jauregui C, Steinkopff A et al. High-power multicore fiber laser systems[J]. Progress in Quantum Electronics, 84, 100412(2022).
[166] Demur R, Leviandier L, Turpin E et al. Active coherent beam combining and beam steering using a spatial mode multiplexer[J]. Optics Express, 31, 32105-32113(2023).
[167] Yang Y, Geng C, Li F et al. Fiber-based coherent polarization beam combining with cascaded phase-locking and polarization-transforming controls[J]. Journal of Optics, 20, 055703(2018).
[168] Rouzé B, Fsaifes I, Bellanger S et al. Phase noise measurements and diagnoses of a large array of fiber lasers by PISTIL[J]. Applied Optics, 61, 7846-7851(2022).
[169] Peng Y N, Hu Q Q, Duan J Z et al. Self-adaptiue tilt control method based on second order moment of beam for laser array[J]. High Power Laser and Particle Beams, 35, 041010(2023).
[170] Haraguchi E, Akiyama T, Ando T et al. Simultaneous detection of beam pointing and optical phase errors for multiple beams using a quadrant photo detector for high-efficiency coherent beam combining systems[J]. Applied Physics Express, 12, 102012(2019).
[171] Jiang M, Su R T, Zhang Z X et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique[J]. Applied Optics, 56, 4255-4260(2017).
[172] Liu R Q, Peng C, Wu W S et al. Coherent beam combination of multiple beams based on near-field angle modulation[J]. Optics Express, 26, 2045-2053(2018).
[173] Klenke A, Müller M, Stark H et al. Sequential phase locking scheme for a filled aperture intensity coherent combination of beam arrays[J]. Optics Express, 26, 12072-12080(2018).
[174] Freier C, Legge S, Roberts L et al. Scalable all-fiber coherent beam combination using digital control[J]. Applied Optics, 61, 4543-4548(2022).
[175] Deprez M, Bellanger C, Lombard L et al. Piston and tilt interferometry for segmented wavefront sensing[J]. Optics Letters, 41, 1078-1081(2016).
[176] Deprez M, Wattellier B, Bellanger C et al. Phase measurement of a segmented wave front using PISton and TILt interferometry (PISTIL)[J]. Optics Express, 26, 5212-5224(2018).
[177] Yuan L B. Overview and forecast of fiber optic white-light interfreometry[J]. Acta Optica Sinica, 31, 0900137(2011).
[178] Jones D C, Turner A J, Scott A M et al. A multi-channel phase locked fibre bundle laser[J]. Proceedings of SPIE, 7580, 75801V(2010).
[182] Shekel E, Urbach B, Vidne Y et al. Optical phased array dynamic beam shaping with noise[P].
[184] Wang G J, Song J X, Chen Y S et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 10, e22(2022).
[185] Ma P F, Song J X, Wang G J et al. High-power narrow linewidth fiber laser breaks through 6 kW near single-mode output[J]. Chinese Journal of Lasers, 49, 0916002(2022).
[186] Ren S, Ma P F, Chen Y S et al. 5 kW-level narrow linewidth fiber laser output realized by homemade polarization-maintained fiber[J]. Infrared and Laser Engineering, 52, 20220900(2023).
[187] Wang Y S, Peng W J, Wang J et al. Output of 4 kW <10 GHz narrow linewidth linear polarization near diffraction limit fiber laser[J]. High Power Laser and Particle Beams, 35, 089901(2023).
[188] Müller M, Aleshire C, Buldt J et al. Scaling potential of beam-splitter-based coherent beam combination[J]. Optics Express, 29, 27900-27911(2021).
[189] Zhang Y Q, Hou T Y, Chang H X et al. Tight focusing properties and focal field tailoring of cylindrical vector beams generated from a linearly polarized coherent beam array[J]. Optics Express, 29, 5259-5269(2021).
[190] Ju P, Fan W H, Gao W et al. Phase control scheme of the coherent beam combining system for generating perfect vectorial vortex beams assisted by a Dammann vortex grating[J]. Optics Express, 31, 22372-22384(2023).
[191] Wellmann F, Bode N N, Wessels P et al. Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors[J]. Optics Express, 29, 10140-10149(2021).
[192] Ma T, Li F Q, Lin H H. Recent progress of high power green laser based on frequency doubling technology for fiber laser[J]. High Power Laser and Particle Beams, 35, 071005(2023).
[193] Zhou P, Wang X, Ma Y et al. Review on recent progress on mid-infrared fiber lasers[J]. Laser Physics, 22, 1744-1751(2012).
[194] Zhou P, Ma Y X, Wang X L et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm[J]. Optics Letters, 34, 2939-2941(2009).
[195] Cox J A, Putnam W P, Sell A et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback[J]. Optics Letters, 37, 3579-3581(2012).
[196] Weyrauch T, Vorontsov M, Mangano J et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 41, 840-843(2016).
[197] Sprangle P, Hafizi B, Ting A et al. High-power lasers for directed-energy applications[J]. Applied Optics, 54, F201-F209(2015).
[198] Vorontsov M A, Weyrauch T. High-power lasers for directed-energy applications: comment[J]. Applied Optics, 55, 9950-9953(2016).
[199] Sprangle P, Hafizi B, Ting A et al. High-power lasers for directed-energy applications: reply[J]. Applied Optics, 56, 4825-4826(2017).
[200] Bruesselbach H, Wang S Q, Minden M et al. Power-scalable phase-compensating fiber-array transceiver for laser communications through the atmosphere[J]. Journal of the Optical Society of America B: Optical Physics, 22, 347-353(2005).
[201] Klenke A, Müller M, Stark H et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0902709(2018).
[202] Dubinovsky M, Wreford C, Trela-McDonald N et al. Innovative freeform design methodology used for high efficiency coherent beam combination design study[J]. Proceedings of SPIE, PC12515, PC125150G(2023).
Get Citation
Copy Citation Text
Pu Zhou, Hongxiang Chang, Rongtao Su, Xiaolin Wang, Yanxing Ma. Research History and Prospects of Coherent Beam Combining of Fiber Lasers: From Perspective of Citations (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0121002
Category: Perspective
Received: Dec. 6, 2023
Accepted: Dec. 29, 2023
Published Online: Jan. 19, 2024
The Author Email: Zhou Pu (zhoupu203@163.com)
CSTR:32183.14.CJL231480