Laser Journal, Volume. 46, Issue 2, 115(2025)
Super-resolution network of remote sensing images based on edge extraction and enhancement
[1] [1] Zhao J, Ding Z, Zhou Y, et al. Efficient Decoder for Endto-End Oriented Object Detection in Remote Sensing Images[J]. arXiv preprint arXiv: 2311.17629, 2023.
[2] [2] Kuckreja K, Danish M S, Naseer M, et al. Geochat: Grounded large vision-language model for remote sensing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 27831-27840.
[3] [3] Fodor G, Conde M V. Rapid deforestation and burned area detection using deep multimodal learning on satellite imagery[J]. arXiv preprint arXiv: 2307.04916, 2023.
[4] [4] Wong K C L, Klein L, Da Silva A F, et al. Image-Based Soil Organic Carbon Remote Sensing from Satellite Images with Fourier Neural Operator and Structural Similarity[C]//IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2023: 1305-1308.
[5] [5] Chen X, Yu A, Sun Q, et al. Semi-supervised Road Updating Network (SRUNet): A Deep Learning Method for Road Updating from Remote Sensing Imagery and Historical Vector Maps[J]. arXiv preprint arXiv: 2304.14972, 2023.
[9] [9] Dong C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[C]//Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13. Springer International Publishing, 2014: 184-199.
[10] [10] Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2017: 136-144.
[11] [11] Zhang Y, Tian Y, Kong Y, et al. Residual dense network for image super-resolution[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2472-2481.
[12] [12] Zhang Y, Li K, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 286-301.
[13] [13] Ledig C, Theis L, Huszr F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4681-4690.
[14] [14] Wang X, Yu K, Wu S, et al. Esrgan: Enhanced superresolution generative adversarial networks[C]//Proceedings of the European conference on computer vision (ECCV) workshops. 2018.
[15] [15] Ji X, Cao Y, Tai Y, et al. Real-world super-resolution via kernel estimation and noise injection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020: 466-467.
[16] [16] Wang X, Xie L, Dong C, et al. Real-esrgan: Training real-world blind super-resolution with pure synthetic data[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 1905-1914.
[17] [17] Jiang K, Wang Z, Yi P, et al. Edge-enhanced GAN for remote sensing image superresolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5799-5812.
[18] [18] Soria X, Li Y, Rouhani M, et al. Tiny and Efficient Model for the Edge Detection Generalization[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 1364-1373.
[19] [19] Sunkara R, Luo T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 2022: 443-459.
[20] [20] Jiang K, Wang Z, Yi P, et al. Edge-enhanced GAN for remote sensing image superresolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5799-5812.
[21] [21] Dai T, Cai J, Zhang Y, et al. Second-order attention network for single image super-resolution[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 11065-11074.
[22] [22] Fei Y, LianFen H, Yan Y. An improved PSNR algorithm for objective video quality evaluation[C]//2007 Chinese Control Conference. IEEE, 2007: 376-380.
[23] [23] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600-612.
[24] [24] Zhu H, Chen X, Dai W, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]//2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015: 3735-3739.
[25] [25] Cheng G, Han J, Zhou P, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119-132.
[26] [26] Long Y, Gong Y, Xiao Z, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.
[27] [27] Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS journal of photogrammetry and remote sensing, 2020, 159: 296-307.
[28] [28] Chen W, Han B, Yang Z, et al. MSSDet: Multi-Scale Ship-Detection Framework in Optical Remote-Sensing Images and New Benchmark[J]. Remote Sensing, 2022, 14(21): 5460.
Get Citation
Copy Citation Text
YU Xiang, DING Yanwen, YANG Lu. Super-resolution network of remote sensing images based on edge extraction and enhancement[J]. Laser Journal, 2025, 46(2): 115
Category:
Received: Aug. 13, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: DING Yanwen (s220101025@stu.cqupt.edu.cn)