Journal of Optoelectronics · Laser, Volume. 34, Issue 8, 890(2023)

Research on 2D MR brain tumor image segmentation algorithm based on multimodal fusion

LI Nan and ZHANG Hongli*
Author Affiliations
  • [in Chinese]
  • show less
    References(13)

    [1] [1] FITZMAURICE C,ALLEN C,BARBER R M,et al.Global regional and national cancer incidence mortality years of life lost years lived with disability and disability-adjusted life-years for 32 cancer groups,1990 to 2015:a systematic analysis for the global burden of disease study[J].JAMA Oncology,2017,3(4):524-548.

    [2] [2] LONG J,SHELHAMER E,DARRELL T.An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation[EB/OL].(2017-12-22)[2022-05-10].https://arxiv.org/abs/1709.02764v1.

    [3] [3] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[EB/OL].(2015-05-18)[2022-05-10].https://arxiv.org/abs/1505.04597.

    [4] [4] ZHOU Z W,SIDDIQUEE M R,TAJBAKHSH N,et al.Unet++:a nested u-net architecture for medical image segmentation[C]//International Workshop on Deep Learning in Medical Image Analysis,International Workshop on Multimodal Learing for Clinical Decision Support,DL MIA,ML-CDS,2018,September 20,2018,Granada,Spain.Cham:Springer,2018,11045:3-11.

    [5] [5] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL]. (2018-08-22)[2022-05-10].https://arxiv.org/abs/1802.026-11v2.

    [6] [6] PENG S T,CHEN W,SUN J W,et al.Multi-scale 3D U-nets:an approach to automatic segmentation of brain tumor[J].International Journal of Imaging Systems and Technology,2020,30(1):5-17.

    [7] [7] OKTAY O,SCHLEMPER J,FOLGOC L,et al.Attention U-net:learning where to look for the pancreas[EB/OL].(2018-05-20)[2022-05-10].https://arxiv.org/abs/1804.03999.

    [8] [8] CAO H,WANG Y Y,CHEN J,et al.Swin-Unet:Unet-like pure transformer for medical image segmentation[EB/OL]. (2021-05-12)[2022-05-10].https://arxiv.org/abs/2105.05537.

    [9] [9] CHEN J N,LU Y Y,YU Q H.TransUNet:transformers make strong encoders for medical image segmentation[EB/OL].(2021-02-8)[2022-05-10].https://arxiv.org/abs/2102.04306.

    [10] [10] WANG H N,CAO P,WANG J Q.UCTransNet:rethinking the skip connections in U-net from a channel-wise perspective with transformer[EB/OL].(2022-09-09)[2022-05-10].https://arxiv.org/abs/2109.04335v3.

    [11] [11] SUN J,PENG Y,GUO Y,et al.Segmentation of the multimodal brain tumor image used the multi-pathway architecture method based on 3D FCN[J].Neurocomputing,2021,423(1):34-45.

    [13] [13] JEFFREY R,PETRELLA JAMES M.MR perfusion imaging of the brain techniques and applications[J].Provenzale American Journal of Roentgenology, 2000, 175(1): 207-219.

    [14] [14] UKA A,POLISI X,BARTHES J, et al. Effect of preprocessing on performance of neural networks for microscopy image classification[C]//2020 International Conference on Computing, Electronics & Communications Engineering, August 17-18,2020,Online Via Zoom.New York:IEEE,2020:162-165.

    Tools

    Get Citation

    Copy Citation Text

    LI Nan, ZHANG Hongli. Research on 2D MR brain tumor image segmentation algorithm based on multimodal fusion[J]. Journal of Optoelectronics · Laser, 2023, 34(8): 890

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 21, 2022

    Accepted: --

    Published Online: Sep. 25, 2024

    The Author Email: ZHANG Hongli (1606829274@qq.com)

    DOI:10.16136/j.joel.2023.08.0379

    Topics