Chinese Journal of Lasers, Volume. 49, Issue 7, 0706004(2022)

Simulation and Experimental Research of Multimodulation Format Compatible Space Laser High-Speed Communication Modulation

He Zhao1, Peng Zhang1,2、*, Zhiqun Yang3, Ju Ouyang1, Dongsheng Tian1, Zhuang Liu1, Dashuai Wang2, and Huilin Jiang1
Author Affiliations
  • 1School of Electro-Optical Engineering, Changchun University of Science and Technology, Changchun, Jilin 130012, China
  • 2School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130012, China
  • 3School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    References(26)

    [1] Zhang H Y, Li H Z, Xiao D Y et al. Performance analysis of spatial-diversity reception over combined effects of atmospheric turbulence[J]. Chinese Journal of Lasers, 43, 0405002(2016).

    [2] Cao M H, Wu X, Wang H Q et al. Performance of faster-than-Nyquist optical communication system under Gamma-Gamma atmospheric turbulence[J]. Chinese Journal of Lasers, 47, 0906003(2020).

    [3] Chen J D, Wang T S, Zhang X M et al. Free space optical communication system based on wide-spectrum partially coherent laser[J]. Journal of Applied Optics, 40, 157-161(2019).

    [4] Palliyembil V, Vellakudiyan J, Muthuchidambaranathan P. Asymptotic bit error rate analysis of free space optical systems using spatial diversity[J]. Optics Communications, 427, 617-621(2018).

    [5] Du B C, Wang Y, Wu E et al. Laser communication based on a multi-channel single-photon detector[J]. Optics Communications, 426, 89-93(2018).

    [6] Guan H J, Liu Y Q, Zhang F J. Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm[J]. Chinese Optics, 12, 1131-1138(2019).

    [7] Niu M B, Cheng J L, Holzman J F. Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence[J]. IEEE Transactions on Communications, 59, 664-668(2011).

    [8] Kuschnerov M. Digital coherent transceivers: from algorithm design to economics[C], 1-46(2017).

    [9] Sova R M, Sluz J E, Young D W et al. 80 Gb/s free-space optical communication demonstration between an aerostat and a ground terminal[J]. Proceedings of SPIE, 6304, 630414(2006).

    [10] Wang Z X, Zhong W D, Fu S N et al. Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique[J]. IEEE Photonics Journal, 1, 277-285(2009).

    [11] Lu J H, Letaief K B, Chuang J C I et al. M-PSK and M-QAM BER computation using signal-space concepts[J]. IEEE Transactions on Communications, 47, 181-184(1999).

    [12] Zhu D M, Mathews V J, Detienne D H. A likelihood-based algorithm for blind identification of QAM and PSK signals[J]. IEEE Transactions on Wireless Communications, 17, 3417-3430(2018).

    [13] Silva N A, Pinto A N. Role of amplifiers gain on the achievable information rate of M-ary PSK and QAM constellations[J]. Optics Communications, 383, 215-222(2017).

    [14] Mata Calvo R, Becker P, Giggenbach D et al. Transmitter diversity verification on ARTEMIS geostationary satellite[J]. Proceedings of SPIE, 8971, 897104(2014).

    [15] Grein M E, Kerman A J, Dauler E A et al. An optical receiver for the Lunar laser communication demonstration based on photon-counting superconducting nanowires[J]. Proceedings of SPIE, 9492, 949208(2015).

    [16] Beppu S, Kasai K, Yoshida M et al. 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz[J]. Optics Express, 23, 4960-4969(2015).

    [17] Yoshida M, Takefushi N, Kasai K et al. Suppression of large error floor in 1024 QAM digital coherent transmission by compensating for GAWBS phase noise[J]. Optics Express, 27, 36691-36698(2019).

    [18] Chand N, Hunton A J, Eteson B M. A comparative study of 2.667 Gb/s OOK, DPSK, and PPM modulation formats for FSO applications[J]. Proceedings of SPIE, 7091, 70910G(2008).

    [19] Li W P, Kong M, Shi J T et al. Multiple radio frequency operation based on a modulator in a radio-over-fiber system[J]. Chinese Journal of Lasers, 47, 1106002(2020).

    [20] Mihara M, Shinohara Y, Kishikawa H et al. Modulation format conversion from BPSK to QPSK using delayed interferometer and pulse shaping filter[C], 82-83(2014).

    [21] Prakash S A, Banu A T, Raghul E B et al. Multilevel modulation format conversion using delay-line filter[C], 1-4(2018).

    [22] Xie X, Huang X, Wang W et al. Multi-modulation-format compatible high-speed laser signal generation system and method[P].

    [23] Wang Y T[D]. Research and implementation of multi-mode coherent optical modulator(2019).

    [24] Ma J X, Yu J, Yu C X et al. Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation[J]. Journal of Lightwave Technology, 25, 3244-3256(2007).

    [25] Krohling R A, Rey J P. Design of optimal disturbance rejection PID controllers using genetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 5, 78-82(2001).

    [26] Song X Q[D]. Research on high speed DP-QPSK coherent optical communication system(2019).

    Tools

    Get Citation

    Copy Citation Text

    He Zhao, Peng Zhang, Zhiqun Yang, Ju Ouyang, Dongsheng Tian, Zhuang Liu, Dashuai Wang, Huilin Jiang. Simulation and Experimental Research of Multimodulation Format Compatible Space Laser High-Speed Communication Modulation[J]. Chinese Journal of Lasers, 2022, 49(7): 0706004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: fiber optics and optical communications

    Received: Jul. 15, 2021

    Accepted: Sep. 24, 2021

    Published Online: Mar. 25, 2022

    The Author Email: Peng Zhang (zhangpeng@cust.edu.cn)

    DOI:10.3788/CJL202149.0706004

    Topics