Journal of Optoelectronics · Laser, Volume. 35, Issue 5, 483(2024)
Hyperspectral image classification based on convolutional neural network and attention mechanism
[1] [1] PANG L,GU W,CAO X.TRQ3DNET:A 3D quasi-recurrent and transformer based network for hyperspectral image denoising [J].Remote Sensing,2022,14(18):4598.
[2] [2] WANG Y,CHEN X,WANG F,et al.Meta-learning based hyperspectral target detection using siamese network [J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-13.
[3] [3] AYAS S,TUNC-GORMUS E.SpectralSWIN:a spectral-swin transformer network for hyperspectral image classification [J].International Journal of Remote Sensing,2022,43(11):4025-4044.
[4] [4] LEE H Y,LEE H K,HA Y H.Spatial color descriptor for image retrieval and video segmentation[J].IEEE Transactions Multimedia,2003,5:358-367.
[5] [5] CHEN Y,LIN Z,ZHAO X,et al.Deep learning-based classification of hyperspectral data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7:2094-2107.
[6] [6] CHEN Y,JIANG H,LI C,et al.Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J].IEEE Transactions on Geoscience & Remote Sensing,2016,54(10):6232-6251.
[7] [7] ROY S K,MANNA S,SONG T,et al.Attention-based adaptive spectral-spatial kernel resnet for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2021,59(9):7831-7843.
[8] [8] ROY S K,KRISHNA G,DUBEY S R,et al.HybridSN:exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J].IEEE Geoscience and Remote Sensing Letters,2020,17(2):277-281.
[9] [9] WANG J,GAO F,DONG J,et al.Adaptive DropBlock-enhanced generative adversarial networks for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2020,59(6):5040-5053.
[10] [10] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 27-30,2016,Las Vegas,NV,USA.New York:IEEE,2016:770-778.
[11] [11] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition,June 20-25,2021,Nashville,TN,USA.New York:IEEE,2021:13708-13717.
[12] [12] VASWANI A,SHAZEER N M,PARMAR N,et al.Attention is all you need [EB/OL].(2017-06-12)[2022-10-23].https://arxiv.org/abs/1706.03762.
[13] [13] KHAN S,NASEER M,HAYAT M,et al.Transformers in vision:a survey[J].ACM Computing Surveys,2022,54(10s):1-14.
[14] [14] XUE T,MA P.TC-net:transformer combined with cnn for image denoising[J].Applied Intelligence,2022,53:6753-6762.
[15] [15] CAO J,CHEN Z,WANG B.Deep convolutional networks with superpixel segmentation for hyperspectral image classification[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),July 10-15,2016,Beijing,China.New York:IEEE,2016:3310-3313.
[16] [16] LEE H,KWON H.Going deeper with contextual CNN for hyperspectral image classification[J].IEEE Transactions on Image Processing,2017,26(10):4843-4855.
[17] [17] LI R,ZHENG S,DUAN C,et al.Classification of hyperspectral image based on double-branch dual-attention mechanism network[J].Remote Sensing,2020,12(3):582.
[18] [18] WANG W,DOU S,JIANG Z,et al.A fast dense spectral-spatial convolution network framework for hyperspectral images classification[J].Remote Sensing,2018,10(7):1068.
Get Citation
Copy Citation Text
GAO Yupeng, YAN Weihong, PAN Xin. Hyperspectral image classification based on convolutional neural network and attention mechanism[J]. Journal of Optoelectronics · Laser, 2024, 35(5): 483
Received: Oct. 23, 2022
Accepted: --
Published Online: Sep. 24, 2024
The Author Email: PAN Xin (pxffyfx@126.com)