Journal of Infrared and Millimeter Waves, Volume. 39, Issue 2, 169(2020)

Terahertz surface plasmon polaritons and their applications

Pu-Kun LIU and Tie-Jun HUANG
Author Affiliations
  • Department of Electronics, Peking University, Beijing0087, China
  • show less
    References(197)

    [1] Maier S A, Atwater H A. Plasmonics: Localization and guiding of electromagnetic energy in metal/ dielectric structures. . Appl. Phys, 98, 011101(2005).

    [2] Hayashi S, Okamoto T. Plasmonics: visit the past to know the future. : Appl. Phys, 45, 433001(2012).

    [3] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [4] Stiles P L, Dieringer J A, Shah N C. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem, 1, 601-626(2008).

    [5] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photon, 4, 83-91(2010).

    [6] MacDonald K F, mson Z L S, Stockman M I. Ultrafast active plasmonics. Nature Photon, 3, 55-58(2009).

    [7] Huidobro P A, Nesterov M L, Martin-Moreno L. Transformation optics for plasmonics. Nano Lett, 10, 1985-1990(2010).

    [8] Kauranen M, Zayat A V. Nonlinear plasmonics. Nature Photon, 6, 737-748(2012).

    [9] Tame M S, McEnery K R, Özdemir S K. Quantum plasmonics. Nature Phys, 9, 329-340(2013).

    [10] Berini P, Leon I D. Surface plasmon–polariton amplifiers and lasers. Nature Photon, 6, 16-24(2012).

    [11] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nature Photon, 6, 749-758(2012).

    [12] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 18, 269-275(1902).

    [13] Pines D. Collective energy losses in solids. Rev. Mod. Phys, 28, 184(1956).

    [14] Fano U. Atomic Theory of electromagnetic interactions in dense materials. Phys. Rev, 103, 1202(1956).

    [15] Ritchie R H. Plasma losses by fast electrons in thin films. Phys. Rev, 106, 874-881(1957).

    [16] Kretschmann E, Reather H. Radiative decay of non-radiative surface plasmons excited by light. . Naturforsch, 23A, 2135-2136(1968).

    [17] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys, 216, 398-410(1968).

    [18] Maier S A. Plasmonics: fundamentals and applications. Springer Science & Business Media(2007).

    [19] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons. Phys. Rep, 408, 131-314(2005).

    [20] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [21] Barnes W L, Murray W A, Dintinger J. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett, 92, 107401(2004).

    [22] Smolyaninov I I, Elliott J, Zayats A V. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys. Rev. Lett, 94, 057401(2005).

    [23] Brongersma M L, Kik P G. Surface plasmon nanophotonics. Springer(2007).

    [24] Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett, 84, 4780-4782(2004).

    [25] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review. Sensor Actuat B-Chem, 54, 3-15(1999).

    [26] Derkacs D, Lim S H, Matheu P. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett, 89, 93103-93103(2006).

    [27] Okamoto K, Niki I, Shvartser A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater, 3, 601-605(2004).

    [28] Mudry E, Belkebir K, Girard J. Structured illumination microscopy using unknown speckle patterns. Nature Photon, 6, 312-315(2012).

    [29] Ponsetto J L, Wei F, Liu Z. Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging. Nanoscale, 6, 5807-5812(2014).

    [30] Wei F, Lu D, Shen H. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett, 14, 4634-4639(2014).

    [31] Wei F, Ponsetto J L, Liu Z. Plasmonic structured illumination microscopy. Nano Lett, 10, 2531-2536(2010).

    [32] Jeon T I, Zhang J, Grischkowsky D. THz Sommerfeld wave propagation on a single metal wire. Appl. Phys. Lett, 86, 161904(2005).

    [33] Jeon T I, Grischkowsky D. THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet. Appl. Phys. Lett, 88, 061113(2006).

    [34] Hanham S M, Fernandez-Dominguez A I, Teng J H. OP226-OP230. Adv.Mater, 24(2012).

    [35] Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [36] Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons. Science, 308, 670-672(2005).

    [37] Williams C R, Andrews S R, Maier S A. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photon, 2, 175-179(2008).

    [38] Tang H H, Liu P K. Terahertz far-field super-resolution imaging through spoof surface plasmons illumination. Opt. Lett, 40, 5822-5825(2015).

    [39] Maier S A, Andrews S R, Martín-Moreno L. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett, 97, 176805(2006).

    [40] Wang K, Mittleman D M. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. Phys. Rev. Lett, 96, 157401(2006).

    [41] Fernández-Domínguez A I, Williams C R, García-Vidal F J. Terahertz surface plasmon polaritons on a helically grooved wire. Appl. Phys. Lett, 93, 141109(2008).

    [42] Rüting F, Fernández-Domínguez A I, Martín-Moreno L. Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum. Phys. Rev, 86, 075437(2012).

    [43] Fernández-Domínguez A I, Moreno E, Martín-Moreno L. Terahertz wedge plasmon polaritons. Opt. Lett, 34, 2063-2065(2009).

    [44] Gao Z, Zhang X, Shen L. Wedge mode of spoof surface plasmon polaritons at terahertz frequencies. . Appl. Phys, 108, 113104(2010).

    [45] Martin-Cano D, Nesterov M L, Fernandz-Dominguez A I. Domino plasmons for subwavelength terahertz circuitry. Opt. Express, 18, 754-764(2010).

    [46] Fernández-Domínguez A I, Moreno E, Martín-Moreno L. Guiding terahertz waves along subwavelength channels. Phys. Rev, 79, 233104(2009).

    [47] Jiang T, Shen L, Wu J. Realization of tightly confined channel plasmon polaritons at low frequencies. Appl. Phys. Lett, 99, 261103(2011).

    [48] Martin-Cano D, Quevedo-Teruel O, Moreno E. Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Opt. Lett, 36, 4635-4637(2011).

    [49] Kumar G, Cui A, Pandey S. Planar terahertz waveguides based on complementary split ring resonators. Opt. Express, 19, 1072-1080(2011).

    [50] Lockyear M J, Hibbins A P, Sambles J R. Microwave surface-plasmon-like modes on thin metamaterials. Phys. Rev. Lett, 102, 073901(2009).

    [51] Gan Q, Fu Z, Ding Y J, Bartoli F J. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys. Rev. Lett, 100, 256803(2008).

    [52] Gan Q, Ding Y J, Bartoli F J. “Rainbow” trapping and releasing at telecommunication wavelengths. Phys. Rev. Lett, 102, 056801(2009).

    [53] Pang Y, Wang J, Ma H. Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption. Sci. Rep, 6, 29429(2016).

    [54] Shen X, Cui T J, Martin-Cano D. Conformal surface plasmons propagating on ultrathin and flexible films. PNAS, 110, 40-45(2013).

    [55] Gao X, Zhou L, Liao Z. An ultra-wideband surface plasmonic filter in microwave frequency. Appl. Phys. Lett, 104, 191603(2014).

    [56] Zhang H C, Liu S, Shen X. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photon. Rev, 9, 83-90(2015).

    [57] Zhang H C, Fan Y, Guo J. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics, 3, 139-146(2015).

    [58] Xu J J, Zhang H C, Zhang Q. Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl. Phys. Lett, 106, 021102(2015).

    [59] Yu N, Wang Q J, Kats M A. Designer spoof surface plasmon structures collimate terahertz laser beams. Nature Mater, 9, 730-735(2010).

    [60] Miyamaru F, Kamijyo M, Hanaoka N. Controlling extraordinary transmission characteristics of metal hole arrays with spoof surface plasmons. Appl. Phys. Lett, 100, 081112(2012).

    [61] Pors A, Moreno E, Martin-Moreno L. Localized spoof plasmons arise while texturing closed surfaces. Phy. Rev. Lett, 108, 223905(2012).

    [62] Shen X, Cui T J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photon. Rev, 8, 137-145(2014).

    [63] Monnai Y, Altmann K, Jansen C. Terahertz beam steering and variable focusing using programmable diffraction gratings. Opt. Express, 21, 2347-2354(2013).

    [64] Yang J, Wang J, Feng M. Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons. Appl. Phys. Lett, 110, 203507(2017).

    [65] Wan X, Yin J Y, Zhang H C. Dynamic excitation of spoof surface plasmon polaritons. Appl. Phys. Lett, 105, 083502(2014).

    [66] Xu Z, Mazumder P. Bio-Sensing by mach-zehnder interferometer comprising doubly-corrugated spoofed surface plasmon polariton (DC-SSPP) waveguide. IEEE Trans. Terahertz Sci. Technol, 2, 460-466(2012).

    [67] Han Y, Li Y, Ma H. Multibeam antennas based on spoof surface plasmon polaritons mode coupling. IEEE Trans. Antennas Propag, 65, 1187-1192(2017).

    [68] Wang Z, Wang J, Ma H. High-efficiency real-time waveform modulator for free space waves based on dispersion engineering of spoof surface plasmon polaritons. J Phy D: Appl Phys, 50, 215104(2017).

    [69] Wang Z, Wang J, Wang X. Real-time waveform modulator based on dispersion engineering of magnetic surface plasmons. J Phy D: Appl Phys, 123, 245106(2018).

    [70] Dai J, Dyakov S A, Yan M. Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons. Phys. Rev, 92, 035419(2015).

    [71] Su H, Shen X, Su G. Efficient generation of microwave plasmonic vortices via a single deep-subwavelength meta-particle. Laser Photon. Rev, 12, 1800010(2018).

    [72] Brongersma M L, Shalaev V M. The case for plasmonics. Science, 328, 440-441(2010).

    [73] Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater, 25, 3264-3294(2013).

    [74] Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [75] Geim A K, Novoselov K S. The rise of graphene, 11-19(2010).

    [76] Mikhailov S A, Ziegler K. New electromagnetic mode in graphene. Phys. Rev. Lett, 99, 016803(2007).

    [77] Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6, 3677-3694(2012).

    [78] De Abajo F J G. Graphene plasmonics: challenges and opportunities. ACS Photonics, 1, 135-152(2014).

    [79] Fei Z, Rodin A S, Andreev G O. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82-85(2012).

    [80] Chen J, Badioli M, Alonso-González P. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487, 77-81(2012).

    [81] Yang G, Lee C, Kim J. Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys, 15, 1798-1801(2013).

    [82] Zhao T, Hu M, Zhong R. Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam. Appl. Phys. Lett, 110, 231102(2017).

    [83] Malard L M, Pimenta M A A, Dresselhaus G. Raman spectroscopy in graphene. Phy. Rep, 473, 51-87(2009).

    [84] Christensen J, Manjavacas A, Thongrattanasiri S. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano, 6, 431-440(2011).

    [85] Andryieuski A, Lavrinenko A V, Chigrin D N. Graphene hyperlens for terahertz radiation. Phy. Rev, 86, 121108(2012).

    [86] Forati E, Hanson G W, Yakovlev A B. Planar hyperlens based on a modulated graphene monolayer. Phy. Rev, 89, 081410(2014).

    [87] Dhillon S S, Vitiello M S, Linfield E H. The 2017 terahertz science and technology roadmap. : Appl. Phys, 50, 043001(2017).

    [88] Fülöp J A, Pálfalvi L, Almási G. Design of high-energy terahertz sources based on optical rectification. Opt. Express,, 18, 12311-12327(2010).

    [89] Samoska L A. An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Trans. THz Sci. Technol.,, 1, 9-24(2011).

    [90] Parker R K. . Vacuum electronics. IEEE Trans. Microwave Teory Tech.,, 50, 835-845(2002).

    [91] Booske J H. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation. Phys. Plasma, 15, 055502(2008).

    [92] Booske J H, Dobbs R J, Joye C D. Vacuum Electronic High Power Terahertz Sources. IEEE Trans. Terahertz Sci. Technol, 1, 54-75(2011).

    [93] Vesseur E J R, Aizpurua J, Coenen T. Plasmonic excitation and manipulation with an electron beam. MRS bulletin, 37, 752-760(2012).

    [94] Cai W, Sainidou R, Xu J, Polman A. Efficient Generation of Propagating Plasmons by Electron Beams. Nano Lett, 9, 1176-1181(2009).

    [95] Matsui T A. Brief Review on Metamaterial-Based Vacuum Electronics for Terahertz and Microwave Science and Technology. J. Infrared Millim. Te, 38, 1140-1161(2017).

    [96] Shin Y, So J, Jang K. Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams. Appl. Phys. Lett, 90, 031502(2007).

    [97] Zhang Y, Hu M, Yang Y. Terahertz radiation of electron beam–cylindrical mimicking surface plasmon wave interaction. : Appl. Phys, 42, 045211(2009).

    [98] Liu S, Hu M, Zhang Y. Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam. Phy. Rev, 80, 036602(2009).

    [99] Zhang Y, Zhou Y, Dong L. THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure. Opt. Express, 21, 1951-21960(2013).

    [100] Zhou Y, Zhang Y, Jiang G. Coherent terahertz radiation generated from a square-shaped free-electron beam passing through multiple stacked layers with sub-wavelength holes. : Appl. Phys, 48, 345102(2015).

    [101] Zhang Y, Zhou Y, Gang Y. Coherent Terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure. Sci. Rep, 7, 41116(2017).

    [102] Zhang Y X, Zhou Y C, Dong L. Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure. Appl. Phys. Lett, 101, 123503(2012).

    [103] Liu Y Q, Kong L B, Du C H. A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating. IEEE Trans. Plasma Sci, 44, 930-937(2016).

    [104] Zhu J F, Du C H, Bao L Y. Regenerated amplifcation of terahertz spoof surface plasmon radiation. New J. Phys, 21, 033021(2019).

    [105] Zhu J F, Du C H, Huang T J. Free-electron-driven beam-scanning terahertz radiation. Opt. express, 27, 26192-26202(2019).

    [106] Zhu J F, Du C H, Li F H. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure. IEEE Access, 7, 181184-181190(2019).

    [107] Liu Y Q, Du C H, Liu P K. Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide. IEEE Trans. Plasma Sci, 44, 3288-3294(2016).

    [108] Kong L B, Huang C P, Du C H. Enhancing spoof surface-plasmons with gradient metasurfaces. Sci. Rep, 5, 8772(2015).

    [109] Okajima A, Matsui T. Electron-beam induced terahertz radiation from graded metallic grating. Opt. Express, 22, 17490-17496(2014).

    [110] So J K, García de Abajo F J, MacDonald K F. Amplification of the evanescent field of free electrons. ACS Photonics, 2, 1236-1240(2015).

    [111] Shin Y M, Barnett L R. Intense wideband terahertz amplification using phase shifted periodic electron-plasmon coupling. Appl. Phys. Lett, 92, 091501(2008).

    [112] Liu Y Q, Liu P K. Excitation of surface plasmon polaritons by electron beam with graphene ribbon arrays. . Appl. Phys, 121, 113104(2017).

    [113] Liu S, Zhang P, Liu W. Surface polariton Cherenkov light radiation source. Phy. Rev. Lett, 109, 153902(2012).

    [114] Gong S, Zhao T, Sanderson M. Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime. Appl. Phys. Lett, 106, 223107(2015).

    [115] Tao Z, Ren-Bin Z, Min H. Tunable terahertz radiation from arbitrary profile dielectric grating coated with graphene excited by an electron beam. Chinese Phys, 24, 094102(2015).

    [116] Zhao T, Gong S, Hu M. Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam. Sci. Rep, 5, 16059(2015).

    [117] Chang H K, Kim Y K. UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole. Sensor Actuat A - Phys, 84, 342-350(2000).

    [118] Liu Y Q, Kong L B, Du C H. Spoof surface plasmon modes on doubly-corrugated metal surfaces at terahertz frequencies. : Appl. Phys, 49, 235501(2016).

    [119] Liu Y Q, Kong L B, Liu P K. Long-range spoof surface plasmons on the doubly corrugated metal surfaces. Opt. Commun, 370, 13-17(2016).

    [120] Liu L, Li Z, Gu C. Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films. . Appl. Phys, 116, 013501(2014).

    [121] Gao X, Shi J H, Ma H F. Dual-band spoof surface plasmon polaritons based on composite-periodic gratings. : Appl. Phys, 45, 505104(2012).

    [122] Pandey S, Gupta B, Nahata A. Terahertz plasmonic waveguides created via 3D printing. Opt. Express, 21, 24422-24430(2013).

    [123] Liang Y, Yu H, Zhang H C. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Sci. Rep, 5, 14853(2015).

    [124] Zhang H C, Cui T J, Zhang Q. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS photonics, 2, 1333-1340(2015).

    [125] Ahmadi-Boroujeni M, Altmann K, Scherger B. Terahertz parallel-plate ladder waveguide with highly confined guided modes. IEEE Trans. Terahertz Sci. Technol, 3, 87-95(2013).

    [126] Kim S H, Oh S S, Kim K J. Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons. Phy. Rev, 91, 035116(2015).

    [127] Xu B, Li Z, Liu L. Tunable band-notched coplanar waveguide based on localized spoof surface plasmons. Opt. Lett, 40, 4683-4686(2015).

    [128] Liu J, Mendis R, Mittleman D M. Designer reflectors using spoof surface plasmons in the terahertz range. Phy. Rev, 86, 241405(2012).

    [129] Tang H H, Huang B, Huang T J. Efficient waveguide mode conversions by spoof surface plasmon polaritons at terahertz frequencies. IEEE Photonics J, 9, 1-10(2017).

    [130] Yin J Y, Ren J, Zhang H C. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Sci. Rep, 5, 8165(2015).

    [131] Liu X, Feng Y, Chen K. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Opt. Express, 22, 20107-20116(2014).

    [132] Han Z, Zhang Y, Bozhevolnyi S I. Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime. Opt. Lett, 40, 2533-2536(2015).

    [133] Cui T J, Shen X. THz and microwave surface plasmon polaritons on ultrathin corrugated metallic strips, 2013 6, 147-164.

    [134] Zhou Y J, Yang B J. A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system. Opt. Express, 22, 21589-21599(2014).

    [135] Zhou Y J, Cui T J. Multidirectional surface-wave splitters. Appl. Phys. Lett, 98, 221901(2011).

    [136] Gan Q, Fu Z, Ding Y J. Bidirectional subwavelength slit splitter for THz surface plasmons. Opt. Express, 15, 18050-18055(2007).

    [137] Zhou Y J, Yang X X, Cui T J. A multidirectional frequency splitter with band-stop plasmonic filters. : Appl. Phys, 115, 123105(2014).

    [138] Yi H, Qu S W, Bai X. Antenna array excited by spoof planar plasmonic waveguide. IEEE Antenn. Wirel. Pr, 13, 1227-1230(2014).

    [139] Yin J Y, Ren J, Zhang Q. Frequency-controlled broad-angle beam scanning of patch array fed by spoof surface plasmon polaritons. IEEE Trans. Antennas Propag, 64, 5181-5189(2016).

    [140] Guan D F, You P, Zhang Q. A wide-angle and circularly polarized beam-scanning antenna based on microstrip spoof surface plasmon polariton transmission line. IEEE Antenn. Wirel. Pr, 16, 2538-2541(2017).

    [141] Li Y, Zhang J, Ma H. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes. Sci. Rep, 6, 34518(2016).

    [142] Yang J, Wang J, Li Y. Broadband planar achromatic anomalous reflector based on dispersion engineering of spoof surface plasmon polariton. Appl. Phys. Lett, 109, 211901(2016).

    [143] Chen H, Ma H, Wang J. Broadband spoof surface plasmon polariton couplers based on transmissive phase gradient metasurface. J Phy D: Appl. Phys, 50, 375104(2017).

    [144] Shi X, Qin J, Han Z. Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide. Opt. Express, 25, 278-283(2017).

    [145] Ma Z, Hanham S M, Huidobro P.Arroyo. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides. APL Photonics, 2, 116102(2017).

    [146] Chen X, Fan W. Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon. Sci. Rep, 7, 2092(2017).

    [147] Ng B, Wu J, Hanham S M. Spoof plasmon surfaces: a novel platform for THz sensing. Adv. Opt. Mater, 1, 543-548(2013).

    [148] Ng B, Hanham S M, Wu J. Broadband terahertz sensing on spoof plasmon surfaces. Acs Photonics, 1, 1059-1067(2014).

    [149] Yao H, Zhong S. High-mode spoof SPP of periodic metal grooves for ultra-sensitive terahertz sensing. Opt. Express, 22, 25149-25160(2014).

    [150] Huidobro P A, Shen X, Cuerda J. Magnetic localized surface plasmons. Phy. Rev, 4, 021003(2014).

    [151] Li Z, Xu B, Gu C. Localized spoof plasmons in closed textured cavities. Appl. Phys. Lett, 104, 251601(2014).

    [152] Zhang J, Liao Z, Luo Y. Spoof plasmon hybridization. Laser Photon. Rev, 11, 1600191(2017).

    [153] Chen L, Wei Y, Zang X. Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci. Rep, 6, 22027(2016).

    [154] Chen L, Xu N, Singh L. Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials. Adv. Opt. Mater, 5, 1600960(2017).

    [155] Shen X, Cui T J. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl. Phys. Lett, 102, 211909(2013).

    [156] Gao F, Gao Z, Zhang Y. Vertical transport of subwavelength localized surface electromagnetic modes. Laser Photon. Rev, 9, 571-576(2015).

    [157] Gao Z, Gao F, Zhang Y. Forward/Backward Switching of Plasmonic Wave Propagation Using Sign‐Reversal Coupling. Adv. Mater, 29, 1700018(2017).

    [158] Liao Z, Pan B C, Shen X. Multiple Fano resonances in spoof localized surface plasmons. Opt. Express, 22, 15710-15717(2014).

    [159] Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Mater, 1, 26(2002).

    [160] Duling I, Zimdars D. Terahertz imaging: revealing hidden defects. Nature Photon, 3, 630(2009).

    [161] Chan W L, Deibel J, Mittleman D M. Imaging with terahertz radiation. Rep. Prog. Phys, 70, 1325(2007).

    [162] Lee A W M, Qin Q, Kumar S. Real-time terahertz imaging over a standoff distance (>25 meters). Appl. Phys. Lett, 89, 141125-141125(2006).

    [163] Pendry J B, Negative refraction makes a perfect lens. Phy. Rev. Lett, 85, 3966(2000).

    [164] Xiong Y, Liu Z, Sun C. Two-dimensional imaging by far-field superlens at visible wavelengths. Nano Lett, 7, 3360-3365(2007).

    [165] Born M, Wolf E. Principles of optics. Pergamon(1980).

    [166] Betzig E, Finn P L, Weiner J S. Combined shear force and near‐field scanning optical microscopy. Appl. Phys. Lett, 60, 2484-2486(1992).

    [167] Huang T J, Liu J Y, Yin L Z. Superfocusing of terahertz wave through spoof surface plasmons. Opt. Express, 26, 22722-22732(2018).

    [168] Huang T J, Yin L Z, Shuang Y. Far-field subwavelength resolution imaging by spatial spectrum sampling. Phy. Rev. Appl, 12, 034046(2019).

    [169] Fang N, Lee H, Sun C. Sub–diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [170] Tang H H, Liu P K. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform. Opt. Express, 23, 23613-23623(2015).

    [171] Tang H H, Liu P K. Terahertz metalenses for evanescent wave focusing and super-resolution imaging. J. Electromagnet. Wave Appl, 29, 1776-1784(2015).

    [172] Ju L, Geng B, Horng J. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnology, 6, 630-634(2011).

    [173] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8, 1086-1101(2014).

    [174] Li P, Taubner T. Broadband subwavelength imaging using a tunable graphene-lens. ACS Nano, 6, 10107-10114(2012).

    [175] Li P, Wang T, Böckmann H. Graphene-enhanced infrared near-field microscopy. Nano Lett, 14, 4400-4405(2014).

    [176] Tang H H, Huang T J, Liu J Y. Tunable Terahertz Deep Subwavelength Imaging Based on a Graphene Monolayer. Sci Rep, 7, 46283(2017).

    [177] Liu J Y, Huang T J, Liu P K. Terahertz super-resolution imaging using four-wave mixing in graphene. Opt. Lett, 43, 2102-2105(2018).

    [178] Huang T J, Tang H H, Tan Y. Terahertz super-resolution imaging based on subwavelength metallic grating. IEEE Trans. Antennas Propag, 67, 1109(2019).

    [179] Song K, Mazumder P. Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial. IEEE Trans. Electron Dev, 56, 2792-2799(2009).

    [180] Aghadjani M, Mazumder P. Terahertz switch based on waveguide-cavity-waveguide comprising cylindrical spoof surface plasmon polariton. IEEE Trans. Electron Dev, 62, 1312-1318(2015).

    [181] Song K, Mazumder P. Dynamic terahertz spoof surface plasmon–polariton switch based on resonance and absorption. IEEE Trans. Electron Dev, 58, 2172-2176(2011).

    [182] Zhang H C, Cui T J, Xu J. Real‐time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial. Adv. Mater. TechnoL, 2, 1600202(2017).

    [183] Zhang X, Tang W X, Zhang H C. A Spoof Surface Plasmon Transmission Line Loaded with Varactors and Short‐Circuit Stubs and Its Application in Wilkinson Power Dividers. Adv. Mater. TechnoL, 3, 1800046(2018).

    [184] Tang X L, Zhang Q, Hu S. Capacitor-Loaded Spoof Surface Plasmon for Flexible Dispersion Control and High-Selectivity Filtering. IEEE Microw. Wirel. Comp, 27, 806-808(2017).

    [185] Zhang H C, He P H, Gao X. Pass-band reconfigurable spoof surface plasmon polaritons. . Phys.: Condens. Matter, 30, 134004(2018).

    [186] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [187] Han F Y, Huang T J, Yin L Z. Superfocusing plate of terahertz waves based on a gradient refractive index metasurface. . Appl. Phys, 124, 204902(2018).

    [188] Yin L Z, Huang T J, Han F Y. Terahertz multichannel metasurfaces with sparse unit cells. Opt. Lett, 44, 1556-1559(2019).

    [189] Han F Y, Li F H, Liu J Y. Effective-Medium Characteristics of Reflective Metasurface: A Quasi-One-Port Network Theory. IEEE Trans. Microw. Theory Tech, 67, 3284-3296(2019).

    [190] Sun S, He Q, Xiao S. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Mater, 11, 426-431(2012).

    [191] Sun W, He Q, Sun S. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl, 5, e16003(2016).

    [192] Ma H F, Shen X, Cheng Q. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photon. Rev, 8, 146-151(2014).

    [193] Liu L, Li Z, Gu C. Smooth bridge between guided waves and spoof surface plasmon polaritons. Opt. Lett, 40, 1810-1813(2015).

    [194] Tang H H, Ma T J, Liu P K. Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler. Appl. Phys. Lett, 108, 191903(2016).

    [195] Tang H H, Tan Y, Liu P K. Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons. Sci Rep, 6, 33496(2016).

    [196] Huang T J, Yin L Z, Liu J Y. High-efficiency directional excitation of spoof surface plasmons by periodic scattering cylinders. Opt. lett, 44, 3972-3975(2019).

    [197] Yin L Z, Huang T J, Han F Y. High-efficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering. Opt. Express, 27, 18928-18939(2019).

    Tools

    Get Citation

    Copy Citation Text

    Pu-Kun LIU, Tie-Jun HUANG. Terahertz surface plasmon polaritons and their applications[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 169

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Millimeter Wave and Terahertz Technology

    Received: Dec. 10, 2019

    Accepted: --

    Published Online: Apr. 29, 2020

    The Author Email:

    DOI:10.11972/j.issn.1001-9014.2020.02.006

    Topics