Chinese Journal of Lasers, Volume. 50, Issue 7, 0708004(2023)

Research Progress in Supercontinuum Generation and Regulation Based on Femtosecond Laser Filamentation

Zeliang Zhang1,2, Wenqi Qian1,3, Pengfei Qi1,2、*, Lie Lin1,3, and Weiwei Liu1,2
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 3Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
  • show less
    References(93)

    [1] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000 Å via four-photon coupling in glass[J]. Physical Review Letters, 24, 584-587(1970).

    [2] Corkum P B, Ho P P, Alfano R R et al. Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors[J]. Optics Letters, 10, 624-626(1985).

    [3] Golub I. Optical characteristics of supercontinuum generation[J]. Optics Letters, 15, 305-307(1990).

    [4] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [5] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).

    [6] Chin S L, Hosseini S A, Liu W et al. The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges[J]. Canadian Journal of Physics, 83, 863-905(2005).

    [7] Boyd R W[M]. Nonlinear Optics(2020).

    [8] Liu W, Petit S, Becker A et al. Intensity clamping of a femtosecond laser pulse in condensed matter[J]. Optics Communications, 202, 189-197(2002).

    [9] Aközbek N, Scalora M, Bowden C M et al. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air[J]. Optics Communications, 191, 353-362(2001).

    [10] Gaeta A L. Catastrophic collapse of ultrashort pulses[J]. Physical Review Letters, 84, 3582-3585(2000).

    [11] Yang G, Shen Y R. Spectral broadening of ultrashort pulses in a nonlinear medium[J]. Optics Letters, 9, 510-512(1984).

    [12] DeMartini F, Townes C H, Gustafson T K et al. Self-steepening of light pulses[J]. Physical Review, 164, 312-323(1967).

    [13] Ranka J K, Gaeta A L. Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses[J]. Optics Letters, 23, 534-536(1998).

    [14] Rothenberg J E. Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses[J]. Optics Letters, 17, 1340-1342(1992).

    [15] Fibich G, Papanicolaou G C. Self-focusing in the presence of small time dispersion and nonparaxiality[J]. Optics Letters, 22, 1379-1381(1997).

    [16] Kandidov V P, Kosareva O G, Golubtsov I S et al. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)[J]. Applied Physics B, 77, 149-165(2003).

    [17] Kosareva O G, Kandidov V P, Brodeur A et al. Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air[J]. Optics Letters, 22, 1332-1334(1997).

    [18] Gao Y T, Su Y B, Xu S Y et al. Generation of annular femtosecond few-cycle pulses by self-compression and spatial filtering in solid thin plates[J]. Optics Express, 29, 29789-29801(2021).

    [19] Liu J X, Leng J, Wu K F et al. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films[J]. Journal of the American Chemical Society, 139, 1432-1435(2017).

    [20] Wolff C M, Frischmann P D, Schulze M et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods[J]. Nature Energy, 3, 862-869(2018).

    [21] Jiang Y Z, Qin C C, Cui M H et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 10, 1868(2019).

    [22] Guo L, Wu M, Cao T et al. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides[J]. Nature Physics, 15, 228-232(2019).

    [23] Cho D W, Fujitsuka M, Sugimoto A et al. Regulation of photodynamic interactions in 1, 8-naphthalimide-linker-phenothiazine dyads by cyclodextrins[J]. Physical Chemistry Chemical Physics, 16, 5779-5784(2014).

    [24] Hsieh C C, Chou P T, Shih C W et al. Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore[J]. Journal of the American Chemical Society, 133, 2932-2943(2011).

    [25] Hauri C P, Lopez-Martens R B, Blaga C I et al. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 microm from an optical filament[J]. Optics Letters, 32, 868-870(2007).

    [26] Yang W Q, Zhang B, Xue G H et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Letters, 39, 1849-1852(2014).

    [27] Kasparian J, Rodriguez M, Méjean G et al. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).

    [28] Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 24, 592-594(1970).

    [29] Nibbering E T, Curley P F, Grillon G et al. Conical emission from self-guided femtosecond pulses in air[J]. Optics Letters, 21, 62-65(1996).

    [30] Théberge F, Châteauneuf M, Ross V et al. Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air[J]. Optics Letters, 33, 2515-2517(2008).

    [31] Mitrofanov A V, Voronin A A, Sidorov-Biryukov D A et al. Mid-infrared laser filaments in the atmosphere[J]. Scientific Reports, 5, 8368(2015).

    [32] Lei H B, Yao J P, Zhao J et al. Ultraviolet supercontinuum generation driven by ionic coherence in a strong laser field[J]. Nature Communications, 13, 1-9(2022).

    [33] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Optics Letters, 25, 25(2000).

    [34] Liu W W, Xue J Y, Su Q et al. Research progress on ultrafast laser filamentation[J]. Chinese Journal of Lasers, 47, 0500003(2020).

    [35] Li Z X, Gong C, Hua L Q et al. Supercontinuum generation in calcium fluoride crystals using high-intensity femtosecond laser[J]. Chinese Journal of Lasers, 46, 0508021(2019).

    [36] Alfano R R[M]. The supercontinuum laser source: fundamentals with updated references(2006).

    [37] Garejev N, Tamošauskas G, Dubietis A. Comparative study of multioctave supercontinuum generation in fused silica, YAG, and LiF in the range of anomalous group velocity dispersion[J]. JOSA B, 34, 88-94(2017).

    [38] Dubietis A, Tamošauskas G, Šuminas R et al. Ultrafast supercontinuum generation in bulk condensed media[J]. Lithuanian Journal of Physics, 57, 3541(2017).

    [39] He P, Liu Y Y, Zhao K et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level[J]. Optics Letters, 42, 474-477(2017).

    [40] Camino A, Hao Z Q, Liu X et al. Control of laser filamentation in fused silica by a periodic microlens array[J]. Optics Express, 21, 7908-7915(2013).

    [41] Camino A, Hao Z Q, Liu X et al. High spectral power femtosecond supercontinuum source by use of microlens array[J]. Optics Letters, 39, 747-750(2014).

    [42] Zhou N, Zhang L Z, Li D W et al. Filamentation and supercontinuum emission with flattened femtosecond laser beam by use of microlens array in fused silica[J]. Acta Physica Sinica, 67, 174205(2018).

    [43] Xi T T, Zhao Z J, Hao Z Q. Femtosecond laser filamentation with a microlens array in air[J]. Journal of the Optical Society of America B, 32, 163-166(2014).

    [44] Yue M M, Yan L H, Xu Y M et al. Intense and collimated supercontinuum generation using microlens array[J]. IEEE Photonics Technology Letters, 29, 2031-2034(2017).

    [45] Gao H, Zhao J Y, Liu W W. Control of multiple filamentation induced by ultrafast laser pulses[J]. Optics and Precision Engineering, 21, 598-607(2013).

    [46] Fu Y X, Xiong H, Xu H et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate[J]. Optics Letters, 34, 3752-3754(2009).

    [47] Gao H, Chu W, Yu G L et al. Femtosecond laser filament array generated with step phase plate in air[J]. Optics Express, 21, 4612-4622(2013).

    [48] Majus D, Dubietis A. Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study[J]. Journal of the Optical Society of America B, 30, 994-999(2013).

    [49] Sun X D, Gao H, Zeng B et al. Multiple filamentation generated by focusing femtosecond laser with axicon[J]. Optics Letters, 37, 857-859(2012).

    [50] Gao H, Sun X D, Zeng B et al. Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol[J]. Journal of Optics, 14, 065203(2012).

    [51] Kompanets V O, Chekalin S V, Kosareva O G et al. Conical emission of a femtosecond laser pulse focused by an axicon into a K 108 glass[J]. Quantum Electronics, 36, 821-824(2006).

    [52] Dota K, Pathak A, Dharmadhikari J A et al. Femtosecond laser filamentation in condensed media with Bessel beams[J]. Physical Review A, 86, 023808(2012).

    [53] Chekalin S V, Kompanets V O, Smetanina E O et al. Light bullets and supercontinuum spectrum during femtosecond pulse filamentation under conditions of anomalous group-velocity dispersion in fused silicalicati[J]. Quantum Electronics, 43, 326-331(2013).

    [54] Zaloznaya E D, Kompanets V O, Chekalin S V et al. Interference effects in the formation of the light bullet spectrum under axicon focusing[J]. Quantum Electronics, 50, 366-374(2020).

    [55] Hu Y Z, Nie J S. Laser filamentation in air via Mathieu modulation: ranging from trajectory-predesigned curved filament to quasi-soliton and ring light bullet[J]. Optics Express, 25, 14944-14959(2017).

    [56] Heck G, Sloss J, Levis R J. Adaptive control of the spatial position of white light filaments in an aqueous solution[J]. Optics Communications, 259, 216-222(2006).

    [57] Borrego-Varillas R, Pérez-Vizcaíno J, Mendoza-Yero O et al. Controlled multibeam supercontinuum generation with a spatial light modulator[J]. IEEE Photonics Technology Letters, 26, 1661-1664(2014).

    [58] Zhdanova A A, Shen Y J, Thompson J V et al. Controlled supercontinua via spatial beam shaping[J]. Journal of Modern Optics, 65, 1332-1335(2018).

    [59] Hong Z F, Zhang Q B, Ali Rezvani S et al. Extending plasma channel of filamentation with a multi-focal-length beam[J]. Optics Express, 24, 4029-4041(2016).

    [60] Li D, Xi T, Zhang L et al. Interference-induced filament array in fused silica[J]. Optics Express, 25, 23910-23919(2017).

    [61] Li D W, Zhang L Z, Xi T T et al. High spectral energy density supercontinuum generation in fused silica by interfering two femtosecond laser beams[J]. Journal of Optics, 21, 065501(2019).

    [62] Zhang Z X, Xu R J, Song L W et al. Supercontinuum enhancement and transfer induced by a plasma grating in air[J]. Acta Physica Sinica, 61, 184209(2012).

    [63] Yao Y H, Lu C H, Xu S W et al. Femtosecond pulse shaping technology and its applications[J]. Acta Physica Sinica, 63, 184201(2014).

    [64] Xu M N, Zhan L D, Xi T T. Influence of pulse duration on the supercontinuum generation from femtosecond laser filamentation in fused silica[J]. Journal of University of Chinese Academy of Sciences, 38, 49-53(2021).

    [65] Mendoza-Yero O, Carbonell-Leal M, Doñate-Buendía C et al. Diffractive control of 3D multifilamentation in fused silica with micrometric resolution[J]. Optics Express, 24, 15307-15318(2016).

    [66] Li P P, Cai M Q, Lü J Q et al. Control of femtosecond multi-filamentation in glass by designable patterned optical fields[J]. AIP Advances, 6, 125103(2016).

    [67] Chen A M, Li S Y, Qi H X et al. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse[J]. Optics Communications, 383, 144-147(2017).

    [68] Ackermann R, Salmon E, Lascoux N et al. Optimal control of filamentation in air[J]. Applied Physics Letters, 89, 171117(2006).

    [69] Thompson J V, Zhokhov P A, Springer M M et al. Amplitude concentration in a phase-modulated spectrum due to femtosecond filamentation[J]. Scientific Reports, 7, 43367(2017).

    [70] Chang J W, Zhu R H, Zhang L Z et al. Control of supercontinuum generation from filamentation of shaped femtosecond laser pulses[J]. Acta Physica Sinica, 69, 034206(2020).

    [71] Yang H, Zhang J, Zhang Q J et al. Polarization-dependent supercontinuum generation from light filaments in air[J]. Optics Letters, 30, 534-536(2005).

    [72] Hauri C P, Vuong L T, Gaeta A L. Optimized supercontinuum generation and pulse self-compression in filaments from the UV to the IR[C](2008).

    [73] Rostami S, Chini M, Lim K et al. Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments[J]. Scientific Reports, 6, 20363(2016).

    [74] Rostami S, Chini M, Lim K et al. Measurements of the impact of polarization on filaments and the associated supercontinuum[C], FTh2A.5(2014).

    [75] Chen N, Wang T J, Zhu Z B et al. Laser ellipticity-dependent supercontinuum generation by femtosecond laser filamentation in air[J]. Optics Letters, 45, 4444-4447(2020).

    [76] Sreeja S, Rao S V, Bagchi S et al. Supercontinuum emission from focused femtosecond laser pulses in air[C], 1391, 291-293(2011).

    [77] Guo H, Dong X, Wang T J et al. Polarization dependent clamping intensity inside a femtosecond filament in air[J]. Chinese Optics Letters, 19, 103201(2021).

    [78] Li Z X, Gong C, Shao T J et al. Orientation-dependent depolarization of supercontinuum in BaF2 crystal[J]. Chinese Physics B, 29, 014212(2020).

    [79] Neshev D N, Dreischuh A, Maleshkov G et al. Supercontinuum generation with optical vortices[J]. Optics Express, 18, 18368-18373(2010).

    [80] Hansinger P, Maleshkov G, Garanovich I L et al. White light generated by femtosecond optical vortex beams[J]. Journal of the Optical Society of America B, 33, 681-690(2016).

    [81] Zhang H, Zhang Y, Lin S et al. Testing the coherence of supercontinuum generated by optical vortex beam in water[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 54, 165401(2021).

    [82] Zhang H, Zhang Y, Lin S et al. Influence of pressure on spectral broadening of femtosecond laser pulses in air[J]. Physics of Plasmas, 28, 043302(2021).

    [83] Zafar S, Li D W, Hao Z Q et al. Influences of astigmatic focusing geometry on femtosecond filamentation and supercontinuum generation in fused silica[J]. Optik, 130, 765-768(2017).

    [84] Potemkin F V, Mareev E I, Smetanina E O. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water[J]. Physical Review A, 97, 033801(2018).

    [85] Wang F, Li D W, Chang J W et al. Effect of lens deviation on the femtosecond filamentation and supercontinuum generation in fused silica[D](2018).

    [86] Yang Y X, Liao M S, Li X et al. Filamentation and supercontinuum generation in lanthanum glass[J]. Journal of Applied Physics, 121, 023107(2017).

    [87] Marčiulionytė V, Jukna V, Tamošauskas G et al. High repetition rate green-pumped supercontinuum generation in calcium fluoride[J]. Science Reports, 11, 15019(2021).

    [88] Nalam S A, Harsha S S, Kiran P P. Effect of focusing element-induced aberrations on filamentation and supercontinuum emission in ambient air[J]. Optics Express, 29, 14668-14681(2021).

    [89] Li Z X, Gong C, Hua L Q et al. Supercontinuum generation in calcium fluoride crystals using high-intensity femtosecond laser[J]. Chinese Journal of Lasers, 46, 0508021.

    [90] Jiang J M, Zhong Y, Zheng Y H et al. Broadening of white-light continuum by filamentation in BK7 glass at its zero-dispersion point[J]. Physics Letters A, 379, 1929-1933(2015).

    [91] Lu C H, Tsou Y J, Chen H Y et al. Generation of intense supercontinuum in condensed media[J]. Optica, 1, 400-406(2014).

    [92] Budriūnas R, Kučinskas D, Varanavičius A. High-energy continuum generation in an array of thin plates pumped by tunable femtosecond IR pulses[J]. Applied Physics B, 123, 212(2017).

    [93] Xu L T, Li D W, Chang J W et al. Powerful supercontinuum vortices generated by femtosecond vortex beams with thin plates[J]. Photonics Research, 10, 802-809(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zeliang Zhang, Wenqi Qian, Pengfei Qi, Lie Lin, Weiwei Liu. Research Progress in Supercontinuum Generation and Regulation Based on Femtosecond Laser Filamentation[J]. Chinese Journal of Lasers, 2023, 50(7): 0708004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: nonlinear optics

    Received: Dec. 15, 2022

    Accepted: Feb. 13, 2023

    Published Online: Apr. 14, 2023

    The Author Email: Qi Pengfei (qipengfei@nankai.edu.cn)

    DOI:10.3788/CJL221530

    Topics