Acta Optica Sinica, Volume. 34, Issue 11, 1114003(2014)
Amplification of Dual-Frequency Laser for Photonic Millimeter-Wave Signal Generation
[2] [2] Chen Qianghua, Luo Huifu, Wang Sumei, et al.. Mesurement of air refractive index based on surface plasmon resonance and phase detection by dual-frequency laser interferometry [J]. Chinesee J Lasers, 2013, 40(1): 0108001.
[3] [3] Zhen Zhiwei, Lu Shunbin, Li Yin, et al.. Optical generation of high-power 0.1-THz continuous wave by external modulation [J]. Chin Opt Lett, 2012, 10(10): 100605.
[4] [4] Zhao Mingbo, He Jun, Fu Qiang. Simulation modeling and analysis of full-waveform ladar signatures [J]. Acta Optica Sinica, 2012, 32(6): 0628002.
[5] [5] D G Smith, A Cooper, E P Goodwin, et al.. Light-Beam Scanning for Laser Radar and Other Uses [P]: U.S.Patent Application 13/840,686. 2013.
[7] [7] McKay Aaron, Judith M Dawes. Microwave generation using a dual-helicoidally-polarized ceramic microchip laser [C]. Microwave Photonics, 2008. 263-266.
[8] [8] Cheng Ren, Zhang Shulian. Diode-pumped dual-frequency microchip NdYAG laser with tunable frequency difference [J]. J Physics D: Applied Physics, 2009, 42(15): 155107.
[9] [9] Ding Jinyun, Zhang Liangqing, Zhang Zhifeng, et al.. Frequency splitting phenomenon of dual transverse modes in a NdYAG laser [J]. Optics & Laser Technology, 2010, 42(2): 341-346.
[10] [10] Yang Qing, Huo Yujing, Duan Yusheng, et al.. Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation [J]. Acta Optica Sinica, 2013, 33(5): 0514002.
[11] [11] Qiao Yunfei, Zheng Shile, Chi Hao, et al.. Electro-optically tunable microwave source based on composite-cavity microchip laser [J]. Opt Express, 2012, 20(27): 29090-29095.
[12] [12] M Hu, R D An, H Zhang, et al.. Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval [J]. Laser Phys Lett, 2013, 10(1): 015801.
[13] [13] P S Teh, R J Lewis, S Alam, et al.. 200 W diffraction limited, single-polarization, all-fiber picosecond MOPA [J]. Opt Express, 2013, 21(22): 25883-25889.
[14] [14] X Wang, H J Eichler, Z Lin, et al.. Stable and tunable single frequency Nd:GSAG laser around 943 nm [J]. Appl Opt, 2013, 52(30): 7302-7310.
[15] [15] X Wang, T Riesbeck, H J Eichler. Tunable single frequency microchip Nd:YAP MOPA laser operating at 1.08 μm [J]. Laser Phys, 2013, 23(4): 045804.
[16] [16] X Yan, Q Liu, X Jiang, et al.. The combined guiding effect in MOPA lasers [J]. Laser Phys Lett, 2013, 10(4): 045003.
[17] [17] Xiang Zhen, Dan Wang, Sunqiang Pan, et al.. Beam quality improvement by gain guiding effection end-pumped Nd:YVO4 laser amplifiers [J]. Opt Express, 2011, 19(21): 21060-21073.
[18] [18] Zhao Zhigang, Dong Yantao, Pan sunqiang, et al.. 50 W class double-end-pumped Nd:YVO4 TEM00 mode solid state laser oscillator [J].Chinese J Lasers, 2011, 38(9): 0902001.
[19] [19] Hu Miao, Tang Yongpan, An Rude, et al.. Study on the single-logitudinal-mode dual-frequency microchip laser for the generation of millimeter-wave signal [J]. J Optoelectrnics·Laser, 2011, 22(10): 1435 -1438.
[20] [20] Hu Miao, Zhang Hui, An Rude, et al.. Study on the dual-longitudinal mode dual-frequency microchip laser of variable frequency difference [J]. J Optoelectrnics·Laser, 2012, 23(12): 2292-2297.
[21] [21] Hu Miao, Zhang Hui, Zhang Fei, et al.. Study on the thermally induced frequency difference characteristics of dual-frequency microchip laser used optical generation millimeter-wave [J]. Acta Physica Sinica, 2013, 62(20): 204205.
Get Citation
Copy Citation Text
Hu Miao, Zhang Fei, Zhang Xiang, Zheng Yaoyuan, Sun Xiao, Xu Yaxi, Xu Weizhong, Ge Jianhong, Xiang Zhen. Amplification of Dual-Frequency Laser for Photonic Millimeter-Wave Signal Generation[J]. Acta Optica Sinica, 2014, 34(11): 1114003
Category: Lasers and Laser Optics
Received: Jun. 4, 2014
Accepted: --
Published Online: Oct. 13, 2014
The Author Email: Miao Hu (miao_hu@foxmail.com)