Photonics Research, Volume. 10, Issue 7, 1669(2022)
Quantum microwave photonics in radio-over-fiber systems
[1] C. H. Lee. Microwave Photonics(2006).
[2] K. Xu, R. Wang, Y. Dai, F. Yin, J. Li, Y. Ji, J. Lin. Microwave photonics: radio-over-fiber links, systems, and applications. Photon. Res., 2, B54-B63(2014).
[3] T. Kawanishi. THz and photonic seamless communications. J. Lightwave Technol., 37, 1671-1679(2019).
[4] Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, S. Pan. Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging. Optical Fiber Communications Conference and Exposition (OFC), Th3G.5(2018).
[5] A. Malacarne, S. Maresca, F. Scotti, B. Hussain, L. Lembo, G. Serafino, A. Bogoni, P. Ghelfi. A ultrawide-band VCSEL-based radar-over-fiber system. International Topical Meeting on Microwave Photonics (MWP), 1-4(2019).
[6] C. Lim, A. Nirmalathas. Radio-over-fiber technology: present and future. J. Lightwave Technol., 39, 881-888(2021).
[7] T. Yamamoto, K. R. Tamura, M. Nakazawa. 1.28 Tbit/s—70-km OTDM femtosecond-pulse transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electron. Commun. Jpn., 86, 68-79(2003).
[9] A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr, M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A. Wallraff, I. Walmsley, F. K. Wilheim. The quantum technologies roadmap: a European community view. New J. Phys., 20, 080201(2018).
[10] M. Krelina. Quantum technology for military applications. EPJ Quantum Technol., 8, 24(2021).
[11] C.-R. Chang, Y.-C. Lin, K.-L. Chiu, T.-W. Huang. The second quantum revolution with quantum computers. AAPPS Bull., 30, 9-22(2020).
[12] H. Zhang, Z. Sun, R. Qi, L. Yin, G.-L. Long, J. Lu. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl., 11, 83(2022).
[13] C.-Y. Gao, P.-L. Guo, B.-C. Ren. Efficient quantum secure direct communication with complete Bell-state measurement. Quantum Eng., 3, e83(2021).
[14] T. B. Pittman, Y. Shih, D. V. Strekalov, A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429-R3432(1995).
[15] D. Strekalov, A. V. Sergienko, D. N. Klyshko, Y. Shih. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett., 74, 3600-3603(1995).
[16] J. H. Shapiro, R. W. Boyd. Response to ‘The physics of ghost imaging—nonlocal interference or local intensity fluctuation correlation’?. Quantum Inf. Process., 11, 1003-1011(2012).
[17] B. E. Saleh, A. F. Abouraddy, A. V. Sergienko, M. C. Teich. Duality between partial coherence and partial entanglement. Phys. Rev. A, 62, 043816(2000).
[18] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich. Role of entanglement in two-photon imaging. Phys. Rev. Lett., 87, 123602(2001).
[19] A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, M. C. Teich. Entangled-photon Fourier optics. J. Opt. Soc. Am. B, 19, 1174-1184(2002).
[20] R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell. Quantum and classical coincidence imaging. Phys. Rev. Lett., 92, 033601(2004).
[21] M. N. O’Sullivan, K. W. C. Chan, R. W. Boyd. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. Phys. Rev. A, 82, 053803(2010).
[22] M. Malik, O. S. Magaña-Loaiza, R. W. Boyd. Quantum-secured imaging. Appl. Phys. Lett., 101, 241103(2012).
[23] E. Lopaeva, I. R. Berchera, I. P. Degiovanni, S. Olivares, G. Brida, M. Genovese. Experimental realization of quantum illumination. Phys. Rev. Lett., 110, 153603(2013).
[24] N. Samantaray, I. Ruo-Berchera, A. Meda, M. Genovese. Realization of the first sub-shot-noise wide field microscope. Light Sci. Appl., 6, e17005(2017).
[25] R. Quan, Y. Zhai, M. Wang, F. Hou, S. Wang, X. Xiang, T. Liu, S. Zhang, R. Dong. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons. Sci. Rep., 6, 30453(2016).
[26] F. Hou, R. Quan, R. Dong, X. Xiang, B. Li, T. Liu, X. Yang, H. Li, L. You, Z. Wang. Fiber-optic two-way quantum time transfer with frequency-entangled pulses. Phys. Rev. A, 100, 023849(2019).
[27] R. Quan, R. Dong, Y. Zhai, F. Hou, X. Xiang, H. Zhou, C. Lv, Z. Wang, L. You, T. Liu, S. Zhang. Simulation and realization of a second-order quantum-interference-based quantum clock synchronization at the femtosecond level. Opt. Lett., 44, 614-617(2019).
[28] Y. Liu, R. Quan, X. Xiang, H. Hong, M. Cao, T. Liu, R. Dong, S. Zhang. Quantum clock synchronization over 20-km multiple segmented fibers with frequency-correlated photon pairs and HOM interference. Appl. Phys. Lett., 119, 144003(2021).
[29] J. Nunn, L. Wright, C. Söller, L. Zhang, I. A. Walmsley, B. J. Smith. Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. Opt. Express, 21, 15959-15973(2013).
[30] J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner. Orthogonal spectral coding of entangled photons. Phys. Rev. Lett., 112, 133602(2014).
[31] L.-C. Kwek, L. Cao, W. Luo, Y. Wang, S. Sun, X. Wang, A. Q. Liu. Chip-based quantum key distribution. AAPPS Bull., 31, 15(2021).
[32] G.-Z. Tang, C.-Y. Li, M. Wang. Polarization discriminated time-bin phase-encoding measurement-device-independent quantum key distribution. Quantum Eng., 3, e79(2021).
[33] A. Yabushita, T. Kobayashi. Spectroscopy by frequency-entangled photon pairs. Phys. Rev. A, 69, 013806(2004).
[34] R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. O’Brien, H. Cable, J. C. F. Matthews. Absorption spectroscopy at the ultimate quantum limit from single-photon states. New J. Phys., 19, 023013(2017).
[35] V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, G. Leuchs. Temporal shaping of single photons enabled by entanglement. Phys. Rev. A, 96, 043822(2017).
[36] V. Averchenko, D. Sych, C. Marquardt, G. Leuchs. Efficient generation of temporally shaped photons using nonlocal spectral filtering. Phys. Rev. A, 101, 013808(2020).
[37] Y. Yang, Y. Jin, X. Xiang, T. Hao, W. Li, T. Liu, S. Zhang, N. Zhu, R. Dong, M. Li. Single-photon microwave photonics. Sci. Bull., 67, 700-706(2022).
[38] A. Yariv, P. Yeh. Chromatic dispersion and polarization mode dispersion in fibers. Photonics: Optical Electronics in Modern Communications(2007).
[39] A. Valencia, M. V. Chekhova, A. Trifonov, Y. Shih. Entangled two-photon wave packet in a dispersive medium. Phys. Rev. Lett., 88, 183601(2002).
[40] Y. Zhang, F. Hou, T. Liu, X.-F. Zhang, S.-G. Zhang, R. Dong. Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide. Acta Phys. Sin., 67, 144204(2018).
[41] X. Xiang, R. Dong, R. Quan, Y. Jin, Y. Yang, M. Li, T. Liu, S. Zhang. Hybrid frequency-time spectrograph for the spectral measurement of the two-photon state. Opt. Lett., 45, 2993-2996(2020).
[42] J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, X. Xie. Improving the timing jitter of a superconducting nanowire single-photon detection system. Appl. Opt., 56, 2195-2200(2017).
[43] M. Frigo, S. G. Johnson. FFTW: An adaptive software architecture for the FFT. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1381-1384(1998).
Get Citation
Copy Citation Text
Yaqing Jin, Ye Yang, Huibo Hong, Xiao Xiang, Runai Quan, Tao Liu, Shougang Zhang, Ninghua Zhu, Ming Li, Ruifang Dong, "Quantum microwave photonics in radio-over-fiber systems," Photonics Res. 10, 1669 (2022)
Category: Fiber Optics and Optical Communications
Received: Jan. 14, 2022
Accepted: May. 19, 2022
Published Online: Jun. 28, 2022
The Author Email: Ruifang Dong (dongruifang@ntsc.ac.cn)