Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 5, 740(2025)

Scene recognition based on deep metric learning and semantic segmentation

Xuan JIA1,2, Ye ZHANG1,2、*, Xuling CHANG1,2, and Jianbo SUN1,2
Author Affiliations
  • 1Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    Figures & Tables(14)
    Overall network architecture of the improved Deeplabv3+ model
    ResNet101 structure
    Strengthening of the feature extraction structure
    Schematic diagram of dilated convolution structure
    ASPP structure diagram
    CFF structure diagram
    DML feature prediction structure
    Comparison of verification accuracy between DML module and baseline module
    Influence of different loss functions on verification accuracy
    Comparison of segmentation results between the module in this paper and the baseline module
    • Table 1. Comparison of the method in this paper with state-of-the-art methods on ADE20K validation set

      View table
      View in Article

      Table 1. Comparison of the method in this paper with state-of-the-art methods on ADE20K validation set

      算法mIoU/%Pixel-Acc/%
      PSPNet1943.2981.39
      CFNNet2044.8982.40
      CCNet2145.2279.83
      OCR2245.2882.52
      GFFNet2345.3382.01
      GSCNet2445.8982.01
      CTNet2545.9482.28
      本文方法47.6082.60
    • Table 2. Comparison of the method in this paper with state-of-the-art methods on the Cityscapes dataset

      View table
      View in Article

      Table 2. Comparison of the method in this paper with state-of-the-art methods on the Cityscapes dataset

      算法mIoU%Backbone
      DeepLabv3 plus+BiFPN+Shuffle Attention2678.69ResNet50
      Mask DINO2780.0ResNet50
      HRNetV22881.1HRNetV2-w48
      CFANet2981.34ResNet50
      CCNet2181.4ResNet101
      GFFNet2382.3ResNet101
      GSCNet2482.6ResNet101
      CTNet2582.8HRNetV2-w48
      OCR2283.0ResNet101
      本文方法83.1ResNet101
    • Table 3. Ablation experiments of DML module on ADE20K validation set

      View table
      View in Article

      Table 3. Ablation experiments of DML module on ADE20K validation set

      算法mIoU/%Pixel-Acc/%
      基线模型46.581.01
      +DML47.682.6
    • Table 4. Experimental ablation of loss function on ADE20K validation set

      View table
      View in Article

      Table 4. Experimental ablation of loss function on ADE20K validation set

      算法mIoU/%
      基线模型45.23
      +焦点损失46.54
      +焦点损失+对比损失47.6
    Tools

    Get Citation

    Copy Citation Text

    Xuan JIA, Ye ZHANG, Xuling CHANG, Jianbo SUN. Scene recognition based on deep metric learning and semantic segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(5): 740

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 20, 2024

    Accepted: --

    Published Online: Jun. 18, 2025

    The Author Email: Ye ZHANG (yolanda@spirits.ai)

    DOI:10.37188/CJLCD.2024-0288

    Topics