Chinese Journal of Cancer Biotherapy, Volume. 32, Issue 7, 673(2025)
A new perspective on tumor immunotherapy:metabolic regulation of T cells
[1] [1] SADE-FELDMAN M, YIZHAK K, BJORGAARD S L,et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma[J]. Cell, 2018, 175(4): 998-1013. DOI:10.1016/j.cell.2018.10.038.
[2] [2] FANG X, WU G, HUA J,et al. TCF-1+ PD-1+ CD8+ T cells are associated with the response to PD-1 blockade in non-small cell lung cancer patients[J]. J Cancer Res Clin Oncol, 2022, 148(10):2653-2660. DOI:10.1007/s00432-021-03845-7.
[3] [3] JANSEN C S, PROKHNEVSKA N, MASTER V A,et al. An intratumoral niche maintains and differentiates stem-like CD8 T cells[J]. Nature, 2019, 576(7787): 465-470. DOI:10.1038/s41586-019-1836-5.
[4] [4] MAHMOUD S M A, PAISH E C, POWE D G,et al. Tumorinfiltrating CD8+ lymphocytes predict clinical outcome in breast cancer[J]. J Clin Oncol, 2011, 29(15): 1949-1955. DOI:10.1200/JCO.2010.30.5037.
[5] [5] AZIMI F, SCOLYER R A, RUMCHEVA P,et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma[J]. J Clin Oncol, 2012, 30(21): 2678-2683. DOI:10.1200/JCO.2011.37.8539.
[7] [7] KISHTON R J, SUKUMAR M, RESTIFO N P. Metabolic regulation of T cell longevity and function in tumor immunotherapy[J]. Cell Metab, 2017, 26(1): 94-109. DOI:10.1016/j.cmet.2017.06.016.
[8] [8] GILES J R, GLOBIG A M, KAECH S M,et al. CD8+ T cells in the cancer-immunity cycle[J]. Immunity, 2023, 56(10): 2231-2253. DOI:10.1016/j.immuni.2023.09.005.
[9] [9] LI X Y, WENES M, ROMERO P,et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. DOI:10.1038/s41571-019-0203-7.
[10] [10] CHAPMAN N M, BOOTHBY M R, CHI H B. Metabolic coordination of T cell quiescence and activation[J]. Nat Rev Immunol, 2020, 20(1): 55-70. DOI:10.1038/s41577-019-0203-y.
[11] [11] FRANCO F, JACCARD A, ROMERO P,et al. Metabolic and epigenetic regulation of T-cell exhaustion[J]. Nat Metab, 2020, 2(10): 1001-1012. DOI:10.1038/s42255-020-00280-9.
[12] [12] BUCK M D, SOWELL R T, KAECH S M,et al. Metabolic instruction of immunity[J]. Cell, 2017, 169(4): 570-586. DOI:10.1016/j.cell.2017.04.004.
[13] [13] BUCK M D, O'SULLIVAN D, KLEIN GELTINK R I,et al. Mitochondrial dynamics controls T cell fate through metabolic programming[J]. Cell, 2016, 166(1): 63-76. DOI:10.1016/j.cell.2016.05.035.
[14] [14] PHAN A T, DOEDENS A L, PALAZON A,et al. Constitutive glycolytic metabolism supports CD8+ T cell effector memory differentiation during viral infection[J]. Immunity, 2016, 45(5):1024-1037. DOI:10.1016/j.immuni.2016.10.017.
[15] [15] PAN Y D, TIAN T, PARK C O,et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism[J]. Nature, 2017, 543(7644): 252-256. DOI:10.1038/nature21379.
[16] [16] O'SULLIVAN D, VAN DER WINDT G J W, HUANG S C,et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development[J]. Immunity,2014, 41(1): 75-88. DOI:10.1016/j.immuni.2014.06.005.
[17] [17] ZHANG H F, LIU J C, YANG Z S,et al. TCR activation directly stimulates PYGB-dependent glycogenolysis to fuel the early recall response in CD8+ memory T cells[J]. Mol Cell, 2022, 82(16): 3077-3088.e6. DOI:10.1016/j.molcel.2022.06.002.
[18] [18] ZHOU Y B, ZHANG C Y, HE L N,et al. Glucose-1-phosphate promotes compartmentalization of glycogen with the pentose phosphate pathway in CD8+ memory T cells[J]. Mol Cell, 2025: S1097-2765(25)00458-7. DOI:10.1016/j.molcel.2025.05.019.
[20] [20] LI W H, CHENG H C, LI G D,et al. Mitochondrial damage and the road to exhaustion[J]. Cell Metab, 2020, 32(6): 905-907. DOI:10.1016/j.cmet.2020.11.004.
[21] [21] WU H, ZHAO X F, HOCHREIN S M,et al. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1-mediated glycolytic reprogramming[J/OL]. Nat Commun, 2023, 14(1): 6858[2025-05-15]. DOI:10.1038/s41467-023-42634-3.
[22] [22] SAXTON R A, SABATINI D M. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 169(2): 361-371. DOI:10.1016/j.cell.2017.03.035.
[23] [23] DIBBLE C C, MANNING B D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output[J]. Nat Cell Biol, 2013, 15(6): 555-564. DOI:10.1038/ncb2763.
[24] [24] FINLAY D K, ROSENZWEIG E, SINCLAIR L V,et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells[J]. J Exp Med, 2012, 209(13): 2441-53. DOI:10.1084/jem.20112607.
[25] [25] RAO R R, LI Q S, ODUNSI K,et al. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin[J]. Immunity, 2010, 32(1): 67-78. DOI:10.1016/j.immuni.2009.10.010.
[26] [26] SUKUMAR M, LIU J, JI Y,et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function[J]. J Clin Invest, 2013, 123(10): 4479-4488. DOI:10.1172/JCI69589.
[27] [27] O'BRIEN T F, GORENTLA B K, XIE D L,et al. Regulation of T-cell survival and mitochondrial homeostasis by TSC1[J]. Eur J Immunol, 2011, 41(11): 3361-3370. DOI:10.1002/eji.201141411.
[28] [28] ZHANG L J, ZHANG H B, LI L L,et al. TSC1/2 signaling complex is essential for peripheral nave CD8+ T cell survival and homeostasis in mice[J/OL]. PLoS One, 2012, 7(2): e30592[2025-05-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3283604/. DOI:10.1371/journal.pone.0030592.
[29] [29] SUGIURA A, ANDREJEVA G, VOSS K,et al. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function[J]. Immunity, 2022, 55(1): 65-81. DOI:10.1016/j.immuni.2021.10.011.
[30] [30] LU C W, YANG D F, KLEMENT J D,et al. G6PD functions as a metabolic checkpoint to regulate granzyme B expression in tumorspecific cytotoxic T lymphocytes[J/OL]. J Immunother Cancer,2022, 10(1): e003543[2025-05-15]. https://pmc.ncbi.nih.gov/articles/PMC8753452/. DOI:10.1136/jitc-2021-003543.
[31] [31] WAN J, SHI J H, SHI M,et al. Lactate dehydrogenase B facilitates disulfidptosis and exhaustion of tumour-infiltrating CD8+ T cells[J]. Nat Cell Biol, 2025, 27(6): 972-982. DOI:10.1038/s41556-025-01673-2.
[32] [32] SHI L Z, WANG R N, HUANG G H,et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells[J]. J Exp Med, 2011, 208(7):1367-1376. DOI:10.1084/jem.20110278.
[33] [33] CHAM C M, DRIESSENS G, O'KEEFE J P,et al. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells[J]. Eur J Immunol, 2008, 38(9):2438-2450. DOI:10.1002/eji.200838289.
[34] [34] GEIGER R, RIECKMANN J C, WOLF T,et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity[J]. Cell, 2016, 167(3): 829-842. e13. DOI:10.1016/j.cell.2016.09.031.
[35] [35] JOHNSON M O, WOLF M M, MADDEN M Z,et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism[J]. Cell, 2018, 175(7): 1780-1795.e19. DOI:10.1016/j.cell.2018.10.001.
[36] [36] GUO C S, YOU Z Y, SHI H,et al. SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity[J]. Nature, 2023,620(7972): 200-208. DOI:10.1038/s41586-023-06299-8.
[37] [37] CAO T Y, ZHANG W Y, WANG Q,et al. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells[J]. Cell, 2024, 187(9): 2288-2304.e27. DOI:10.1016/j.cell.2024.03.011.
[38] [38] YE L P, PARK J J, PENG L,et al. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy[J]. Cell Metab, 2022, 34(4): 595-614. DOI:10.1016/j.cmet.2022.02.009.
[39] [39] OHTA A, GORELIK E, PRASAD S J,et al. A2A adenosine receptor protects tumors from antitumor T cells[J]. Proc Natl Acad Sci USA,2006, 103(35): 13132-13137. DOI:10.1073/pnas.0605251103.
[40] [40] DEAGLIO S, DWYER K M, GAO W D,et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression[J]. J Exp Med, 2007, 204(6):1257-1265. DOI:10.1084/jem.20062512.
[41] [41] ZHANG Y Y, ZHAI Z, DUAN J L,et al. Lactate: the mediator of metabolism and immunosuppression[J/OL]. Front Endocrinol(Lausanne), 2022, 13: 901495[2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/35757394/. DOI:10.3389/fendo.2022.901495.
[42] [42] FISCHER K, HOFFMANN P, VOELKL S,et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells[J]. Blood, 2007,109(9): 3812-3819. DOI:10.1182/blood-2006-07-035972.
[43] [43] ELIA I, ROWE J H, JOHNSON S,et al. Tumor cells dictate antitumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells[J]. Cell Metab, 2022, 34(8):1137-1150. DOI:10.1016/j.cmet.2022.06.008.
[44] [44] PERALTA R M, XIE B X, LONTOS K,et al. Dysfunction of exhausted T cells is enforced by MCT11-mediated lactate metabolism[J]. Nat Immunol, 2024, 25(12): 2297-2307. DOI:10.1038/s41590-024-01999-3.
[45] [45] FENG Q, LIU Z D, YU X X,et al. Lactate increases stemness of CD8+ T cells to augment anti-tumor immunity[J/OL]. Nat Commun,2022, 13(1): 4981[2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/36068198/. DOI:10.1038/s41467-022-32521-8.
[46] [46] LACHER S B, DRR J, DE ALMEIDA G P,et al. PGE2 limits effector expansion of tumour-infiltrating stem-like CD8+ T cells[J]. Nature, 2024, 629(8011): 417-425. DOI:10.1038/s41586-024-07254-x.
[47] [47] MOROTTI M, GRIMM A J, HOPE H C,et al. PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function[J]. Nature, 2024, 629(8011): 426-434. DOI:10.1038/s41586-024-07352-w.
[48] [48] BAYERL F, MEISER P, DONAKONDA S,et al. Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses[J]. Immunity, 2023, 56(6):1341-1358.e11. DOI:10.1016/j.immuni.2023.05.011.
[49] [49] TURNER J A, FREDRICKSON M A, D'ANTONIO M,et al. Lysophosphatidic acid modulates CD8 T cell immunosurveillance and metabolism to impair anti-tumor immunity[J/OL]. Nat Commun, 2023, 14(1): 3214[2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/37270644/. DOI:10.1038/s41467-023-38933-4.
[50] [50] BELL H N, HUBER A K, SINGHAL R,et al. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer[J]. Cell Metab, 2023, 35(1): 134-149. DOI:10.1016/j.cmet.2022.11.013.
[51] [51] THARP K M, KERSTEN K, MALLER O,et al. Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment[J]. Nat Cancer, 2024, 5(7): 1045-1062. DOI:10.1038/s43018-024-00775-4.
[52] [52] BRITT E C, JOHN S V, LOCASALE J W,et al. Metabolic regulation of epigenetic remodeling in immune cells[J]. Curr Opin Biotechnol, 2020, 63: 111-117. DOI:10.1016/j.copbio.2019.12.008.
[53] [53] PENG M, YIN N, CHHANGAWALA S,et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism[J]. Science, 2016, 354(6311): 481-484. DOI:10.1126/science.aaf6284.
[54] [54] QIU J, VILLA M, SANIN D E,et al. Acetate promotes T cell effector function during glucose restriction[J]. Cell Rep, 2019, 27(7): 2063-2074.e5. DOI:10.1016/j.celrep.2019.04.022.
[55] [55] KURODA S, YAMAZAKI M, ABE M,et al. Basic leucine zipper transcription factor, ATF-like (BATF) regulates epigenetically and energetically effector CD8 T-cell differentiationviaSirt1 expression[J]. Proc Natl Acad Sci USA, 2011, 108(36): 14885-14889. DOI:10.1073/pnas.1105133108.
[56] [56] CHANG S J, AUNE T M. Dynamic changes in histone-methylation‘marks’ across the locus encoding interferon-gamma during the differentiation of T helper type 2 cells[J]. Nat Immunol, 2007, 8(7):723-731. DOI:10.1038/ni1473.
[57] [57] BIAN Y J, LI W, KREMER D M,et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation[J]. Nature,2020, 585(7824): 277-282. DOI:10.1038/s41586-020-2682-1.
[58] [58] LIU Z Z, LI X, GAO Y B,et al. Epigenetic reprogramming of Runx3 reinforces CD8+ T-cell function and improves the clinical response to immunotherapy[J/OL]. Mol Cancer, 2023, 22(1): 84[2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/37189103/. DOI:10.1186/s12943-023-01768-0.
[59] [59] LIU P S, WANG H P, LI X Y,et al. -ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming[J]. Nat Immunol, 2017, 18(9): 985-994. DOI:10.1038/ni.3796.
[60] [60] SCIACOVELLI M, GONALVES E, JOHNSON T I,et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition[J]. Nature, 2016, 537(7621): 544-547. DOI:10.1038/nature19353.
[61] [61] YANG Y B, WANG Y N, WANG Z C,et al. ECSIT facilitates memory CD8+ T cell development by mediating fumarate synthesis during viral infection and tumorigenesis[J]. Nat Cell Biol, 2024, 26(3): 450-463. DOI:10.1038/s41556-024-01351-9.
[62] [62] LI H B, TONG J Y, ZHU S,et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548(7667): 338-342. DOI:10.1038/nature23450.
[63] [63] RAYCHAUDHURI D, SINGH P, CHAKRABORTY B,et al. Histone lactylation drives CD8+ T cell metabolism and function[J]. Nat Immunol, 2024, 25(11): 2140-2151. DOI:10.1038/s41590-024-01985-9.
[64] [64] KAWALEKAR O U, O'CONNOR R S, FRAIETTA J A,et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells[J]. Immunity, 2016, 44(2): 380-390. DOI:10.1016/j.immuni.2016.01.021.
[65] [65] CHOI B K, LEE D Y, LEE D G,et al. 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8+ T cell proliferation[J]. Cell Mol Immunol, 2017, 14(9): 748-757. DOI:10.1038/cmi.2016.02.
[66] [66] FRAUWIRTH K A, RILEY J L, HARRIS M H,et al. The CD28 signaling pathway regulates glucose metabolism[J]. Immunity,2002, 16(6): 769-777. DOI:10.1016/s1074-7613(02)00323-0.
[67] [67] GUEDAN S, MADAR A, CASADO-MEDRANO V,et al. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability[J]. J Clin Invest, 2020, 130(6):3087-3097. DOI:10.1172/JCI133215.
[68] [68] KLYSZ D D, FOWLER C, MALIPATLOLLA M,et al. Inosine induces stemness features in CAR T cells and enhances potency[J]. Cancer Cell, 2024, 42(2): 266-282.e8. DOI:10.1016/j.ccell.2024.01.002.
[69] [69] QIU Y J, SU Y P, XIE E M,et al. Mannose metabolism reshapes T cell differentiation to enhance anti-tumor immunity[J]. Cancer Cell,2025, 43(1): 103-121.e8. DOI:10.1016/j.ccell.2024.11.003.
[70] [70] NIU C Y, WEI H, PAN X X,et al. Foxp3 confers long-term efficacy of chimeric antigen receptor-T cellsviametabolic reprogramming[J]. Cell Metab, 2025, 37(6): 1426-1441. DOI:10.1016/j.cmet.2025.04.008.
[71] [71] MALAVASI F, DEAGLIO S, FUNARO A,et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology[J]. Physiol Rev, 2008, 88(3): 841-886. DOI:10.1152/physrev.00035.2007.
[72] [72] HUANG Y, SHAO M, TENG X Y,et al. Inhibition of CD38 enzymatic activity enhances CAR-T cell immune-therapeutic efficacy by repressing glycolytic metabolism[J]. Cell Rep Med,2024, 5(2): 101400. DOI:10.1016/j.xcrm.2024.101400.
[73] [73] ZHU M, HAN Y L, GU T N,et al. Class Ⅰ HDAC inhibitors enhance antitumor efficacy and persistence of CAR-T cells by activation of the Wnt pathway[J/OL]. Cell Rep, 2024, 43(4): 114065[2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/38578828/. DOI:10.1016/j.celrep.2024.114065.
[74] [74] SI X H, SHAO M, TENG X Y,et al. Mitochondrial isocitrate dehydrogenase imepdes CAR T cell function by restraining antioxidant metabolism and histone acetylation[J]. Cell Metab,2024, 36(1): 176-192. DOI:10.1016/j.cmet.2023.12.010.
Get Citation
Copy Citation Text
LI Huayu, LI Chunyang, MA Chunhong. A new perspective on tumor immunotherapy:metabolic regulation of T cells[J]. Chinese Journal of Cancer Biotherapy, 2025, 32(7): 673
Category:
Received: May. 16, 2025
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: