Journal of the Chinese Ceramic Society, Volume. 53, Issue 1, 95(2025)

Photoelectric Performance of Amorphous Titanium Dioxide Modified Titanium Dioxide Photonic Crystal Electrode

JIANG Jiajie1, XIE Xinyuan2, and LI Fengyu2
Author Affiliations
  • 1Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou 510000, China,
  • 2College of Chemistry and Material Science, Jinan University, Guangzhou 510000, China
  • show less
    References(27)

    [1] [1] ZANG Y, LEI J P, JU H X. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures[J]. Biosens Bioelectron, 2017, 96: 8-16.

    [2] [2] KONG Y, CAI Z R, CHEN S Z, et al. Small molecule probes as versatile energy acceptors: A breakthrough in photoelectrochemical sensing for sulfur dioxide recording in rat brain[J]. Biosens Bioelectron, 2024, 243: 115760.

    [3] [3] LIU T Y, LIU B, YANG L F, et al. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability[J]. Appl Catal B Environ, 2017, 204: 593-601.

    [4] [4] LEI M, WANG N, ZHU L H, et al. Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites: A mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper[J]. Appl Catal B Environ, 2016, 182: 414-423.

    [5] [5] LU S C, YAO X, CHENG Y, et al. Recent developments and challenges for volatile organic compounds control by the synergistic of adsorption and photocatalysis[J]. Appl Catal O Open, 2024, 193: 206975.

    [6] [6] XU L, AUMAITRE C, KERVELLA Y, et al. Increasing the efficiency of organic dye-sensitized solar cells over 10.3% using locally ordered inverse opal nanostructures in the photoelectrode[J]. Adv Funct Mater, 2018, 28(15): 1706291.

    [7] [7] TUMRAM P V, NAFDEY R, KAUTKAR P R, et al. Solar cell performance enhancement using nanostructures[J]. Mater Sci Eng B, 2024, 307: 117504.

    [8] [8] BOPPELLA R, KOCHUVEEDU S T, KIM H, et al. Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting[J]. ACS Appl Mater Interfaces, 2017, 9(8): 7075-7083.

    [9] [9] SELVARAJ P, ROY A, ULLAH H, et al. Soft-template synthesis of high surface area mesoporous titanium dioxide for dye-sensitized solar cells[J]. Int J Energy Res, 2019, 43(1): 523-534.

    [10] [10] CHEN Z Y, FANG L, DONG W, et al. Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity[J]. J Mater Chem A, 2014, 2(3): 824-832.

    [11] [11] AKBARI A, ARVAND M, HEMMATI S. A new signal-on photoelectrochemical sensor for glutathione monitoring based on polythiophene/graphitic carbon nitride coated titanium oxide nanotube arrays[J]. J Electroanal Chem, 2019, 848: 113271.

    [12] [12] MAHADIK M A, SHINDE P S, CHO M, et al. Fabrication of a ternary CdS/ZnIn2S4/TiO2 heterojunction for enhancing photoelectrochemical performance: Effect of cascading electron-hole transfer[J]. J Mater Chem A, 2015, 3(46): 23597-23606.

    [13] [13] CHANDRA M, BHUNIA K, PRADHAN D. Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting[J]. Inorg Chem, 2018, 57(8): 4524-4533.

    [14] [14] YU J, LEI J Y, WANG L Z, et al. TiO2 inverse opal photonic crystals: Synthesis, modification, and applications-A review[J]. J Alloys Compd, 2018, 769: 740-757.

    [15] [15] BAYAT F, AHMADIAN KORDASHT S, AMANI-GHADIM A R, et al. Structural, morphological, and optical analysis of TiO2 inverse opals prepared under different synthesis conditions[J]. Mater Chem Phys, 2023, 299: 127514.

    [16] [16] LOURDU MADANU T, CHAABANE L, MOUCHET S R, et al. Manipulating multi-spectral slow photons in bilayer inverse opal TiO2@BiVO4 composites for highly enhanced visible light photocatalysis[J]. J Colloid Interface Sci, 2023, 647: 233-245.

    [17] [17] ZHAO H, HU Z Y, LIU J, et al. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals[J]. Nano Energy, 2018, 47: 266-274.

    [18] [18] ZHANG X, LIU Y, LEE S T, et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting[J]. Energy Environ Sci, 2014, 7(4): 1409-1419.

    [19] [19] CHEN X, LI J, PAN G C, et al. Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing[J]. Sens Actuat B Chem, 2019, 289: 131-137.

    [20] [20] RIEDEL M, PARAK W J, RUFF A, et al. Light as trigger for biocatalysis: Photonic wiring of flavin adenine dinucleotide-dependent glucose dehydrogenase to quantum dot-sensitized inverse opal TiO2 architectures via redox polymers[J]. ACS Catal, 2018, 8(6): 5212-5220.

    [21] [21] HAO L, TANG S Q, YAN J C, et al. Solar-responsive photocatalytic activity of amorphous TiO2 nanotube-array films[J]. Mater Sci Semicond Process, 2019, 89: 161-169.

    [22] [22] JIA H B, SHANG H, HE Y, et al. Engineering the defect distribution via boron doping in amorphous TiO2 for robust photocatalytic NO removal[J]. Appl Catal B Environ Energy, 2024, 356: 124239.

    [23] [23] SANTOS J S, FEREIDOONI M, MRQUEZ V, et al. Photoactivity of amorphous and crystalline TiO2 nanotube arrays (TNA) films in gas phase CO2 reduction to methane with simultaneous H2 production[J]. Environ Res, 2024, 244: 117919.

    [24] [24] Wang J X, Wen Y Q, Ge H L, et al. Simple fabrication of full color colloidal crystal films with tough mechanical strength[J]. Macromol Chem Phys, 2006, 207(6): 596-604.

    [25] [25] LIANG Z Q, BAI X J, HAO P, et al. Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes[J]. Appl Catal B Environ, 2019, 243: 711-720.

    [26] [26] LI S P, LIU C L, CHEN P, et al. In-situ stabilizing surface oxygen vacancies of TiO2 nanowire array photoelectrode by N-doped carbon dots for enhanced photoelectrocatalytic activities under visible light[J]. J Catal, 2020, 382: 212-227.

    [27] [27] JIA S F, LI X Y, ZHANG B P, et al. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation: The role of CuS[J]. Appl Surf Sci, 2019, 463: 829-837

    Tools

    Get Citation

    Copy Citation Text

    JIANG Jiajie, XIE Xinyuan, LI Fengyu. Photoelectric Performance of Amorphous Titanium Dioxide Modified Titanium Dioxide Photonic Crystal Electrode[J]. Journal of the Chinese Ceramic Society, 2025, 53(1): 95

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 31, 2024

    Accepted: Jan. 10, 2025

    Published Online: Jan. 10, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240497

    Topics