Journal of the Chinese Ceramic Society, Volume. 53, Issue 1, 95(2025)
Photoelectric Performance of Amorphous Titanium Dioxide Modified Titanium Dioxide Photonic Crystal Electrode
[1] [1] ZANG Y, LEI J P, JU H X. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures[J]. Biosens Bioelectron, 2017, 96: 8-16.
[2] [2] KONG Y, CAI Z R, CHEN S Z, et al. Small molecule probes as versatile energy acceptors: A breakthrough in photoelectrochemical sensing for sulfur dioxide recording in rat brain[J]. Biosens Bioelectron, 2024, 243: 115760.
[3] [3] LIU T Y, LIU B, YANG L F, et al. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability[J]. Appl Catal B Environ, 2017, 204: 593-601.
[4] [4] LEI M, WANG N, ZHU L H, et al. Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites: A mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper[J]. Appl Catal B Environ, 2016, 182: 414-423.
[5] [5] LU S C, YAO X, CHENG Y, et al. Recent developments and challenges for volatile organic compounds control by the synergistic of adsorption and photocatalysis[J]. Appl Catal O Open, 2024, 193: 206975.
[6] [6] XU L, AUMAITRE C, KERVELLA Y, et al. Increasing the efficiency of organic dye-sensitized solar cells over 10.3% using locally ordered inverse opal nanostructures in the photoelectrode[J]. Adv Funct Mater, 2018, 28(15): 1706291.
[7] [7] TUMRAM P V, NAFDEY R, KAUTKAR P R, et al. Solar cell performance enhancement using nanostructures[J]. Mater Sci Eng B, 2024, 307: 117504.
[8] [8] BOPPELLA R, KOCHUVEEDU S T, KIM H, et al. Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting[J]. ACS Appl Mater Interfaces, 2017, 9(8): 7075-7083.
[9] [9] SELVARAJ P, ROY A, ULLAH H, et al. Soft-template synthesis of high surface area mesoporous titanium dioxide for dye-sensitized solar cells[J]. Int J Energy Res, 2019, 43(1): 523-534.
[10] [10] CHEN Z Y, FANG L, DONG W, et al. Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity[J]. J Mater Chem A, 2014, 2(3): 824-832.
[11] [11] AKBARI A, ARVAND M, HEMMATI S. A new signal-on photoelectrochemical sensor for glutathione monitoring based on polythiophene/graphitic carbon nitride coated titanium oxide nanotube arrays[J]. J Electroanal Chem, 2019, 848: 113271.
[12] [12] MAHADIK M A, SHINDE P S, CHO M, et al. Fabrication of a ternary CdS/ZnIn2S4/TiO2 heterojunction for enhancing photoelectrochemical performance: Effect of cascading electron-hole transfer[J]. J Mater Chem A, 2015, 3(46): 23597-23606.
[13] [13] CHANDRA M, BHUNIA K, PRADHAN D. Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting[J]. Inorg Chem, 2018, 57(8): 4524-4533.
[14] [14] YU J, LEI J Y, WANG L Z, et al. TiO2 inverse opal photonic crystals: Synthesis, modification, and applications-A review[J]. J Alloys Compd, 2018, 769: 740-757.
[15] [15] BAYAT F, AHMADIAN KORDASHT S, AMANI-GHADIM A R, et al. Structural, morphological, and optical analysis of TiO2 inverse opals prepared under different synthesis conditions[J]. Mater Chem Phys, 2023, 299: 127514.
[16] [16] LOURDU MADANU T, CHAABANE L, MOUCHET S R, et al. Manipulating multi-spectral slow photons in bilayer inverse opal TiO2@BiVO4 composites for highly enhanced visible light photocatalysis[J]. J Colloid Interface Sci, 2023, 647: 233-245.
[17] [17] ZHAO H, HU Z Y, LIU J, et al. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals[J]. Nano Energy, 2018, 47: 266-274.
[18] [18] ZHANG X, LIU Y, LEE S T, et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting[J]. Energy Environ Sci, 2014, 7(4): 1409-1419.
[19] [19] CHEN X, LI J, PAN G C, et al. Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing[J]. Sens Actuat B Chem, 2019, 289: 131-137.
[20] [20] RIEDEL M, PARAK W J, RUFF A, et al. Light as trigger for biocatalysis: Photonic wiring of flavin adenine dinucleotide-dependent glucose dehydrogenase to quantum dot-sensitized inverse opal TiO2 architectures via redox polymers[J]. ACS Catal, 2018, 8(6): 5212-5220.
[21] [21] HAO L, TANG S Q, YAN J C, et al. Solar-responsive photocatalytic activity of amorphous TiO2 nanotube-array films[J]. Mater Sci Semicond Process, 2019, 89: 161-169.
[22] [22] JIA H B, SHANG H, HE Y, et al. Engineering the defect distribution via boron doping in amorphous TiO2 for robust photocatalytic NO removal[J]. Appl Catal B Environ Energy, 2024, 356: 124239.
[23] [23] SANTOS J S, FEREIDOONI M, MRQUEZ V, et al. Photoactivity of amorphous and crystalline TiO2 nanotube arrays (TNA) films in gas phase CO2 reduction to methane with simultaneous H2 production[J]. Environ Res, 2024, 244: 117919.
[24] [24] Wang J X, Wen Y Q, Ge H L, et al. Simple fabrication of full color colloidal crystal films with tough mechanical strength[J]. Macromol Chem Phys, 2006, 207(6): 596-604.
[25] [25] LIANG Z Q, BAI X J, HAO P, et al. Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes[J]. Appl Catal B Environ, 2019, 243: 711-720.
[26] [26] LI S P, LIU C L, CHEN P, et al. In-situ stabilizing surface oxygen vacancies of TiO2 nanowire array photoelectrode by N-doped carbon dots for enhanced photoelectrocatalytic activities under visible light[J]. J Catal, 2020, 382: 212-227.
[27] [27] JIA S F, LI X Y, ZHANG B P, et al. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation: The role of CuS[J]. Appl Surf Sci, 2019, 463: 829-837
Get Citation
Copy Citation Text
JIANG Jiajie, XIE Xinyuan, LI Fengyu. Photoelectric Performance of Amorphous Titanium Dioxide Modified Titanium Dioxide Photonic Crystal Electrode[J]. Journal of the Chinese Ceramic Society, 2025, 53(1): 95
Category:
Received: Jul. 31, 2024
Accepted: Jan. 10, 2025
Published Online: Jan. 10, 2025
The Author Email: