Acta Optica Sinica, Volume. 41, Issue 20, 2024001(2021)

Multi-Component Substance Classification and Recognition Based on Surface-Enhanced Raman Spectroscopy

Hexuan Bai1,2, Feng Yang1,2, Danyang Li1,2, Yi Xu1,2, Shunbo Li1,2, and Li Chen1,2、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & System, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China;
  • 2Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
  • show less
    Figures & Tables(16)
    Preprocessing results of the spectrum. (a) Interception of the spectrum; (b) smoothing processing; (c) baseline correction; (d) normalization processing
    Flow chart of modeling and forecasting
    Two similar spectral curves
    Spectra of CV,R6G and NB
    Spectra of multi-component and single-component solutions. (a) Preprocessed spectrum; (b) peak-finding result of maximum value method; (c) secondary smoothing result of spectrum; (d) peak-finding result of characteristic peak discrimination algorithm
    Clustering diagram of different features
    Change curve of the peak intensity
    Processing results of the PCA. (a) Cumulative contribution graph of principal components; (b) scatter plot and confidence ellipsoid of the scores of the first 3 principal components
    Cumulative contribution of principal components of multi-component samples. (a) NB, CV; (b) CV, R6G
    Distribution point diagram of the principal components of multi-component sample. (a) NB、CV; (b) CV、R6G
    Prediction results of the rough classification model
    Prediction results of the subdivision model. (a) CV, R6G; (b) NB, R6G; (c) CV, NB
    Correlation curve between true value and predicted value. (a) R6G; (b) NB; (c) CV
    • Table 1. Composition of 18 types of samples

      View table

      Table 1. Composition of 18 types of samples

      TypeR6GNBCVV(A)∶V(B)∶V(C)TypeR6GNBCVV(A)∶V(B)∶V(C)
      A10∶0∶0AC0∶3∶7
      B0∶10∶0AC0∶5∶5
      C0∶0∶10AC0∶7∶3
      AB1∶9∶0AC0∶9∶1
      AB3∶7∶0BC1∶0∶9
      AB5∶5∶0BC3∶0∶7
      AB7∶3∶0BC5∶0∶5
      AB9∶1∶0BC7∶0∶3
      AC0∶1∶9BC9∶0∶1
    • Table 2. Average error of subdivision modelunit: %

      View table

      Table 2. Average error of subdivision modelunit: %

      True valueR6GNBCV
      100.792592.591231.34607
      302.673430.398530.56356
      501.754000.537851.20700
      700.125072.615581.16878
      901.675701.202061.83150
    • Table 3. Prediction results of different feature extraction methods

      View table

      Table 3. Prediction results of different feature extraction methods

      MethodR6GNBCV
      RMSEPRRMSEPRRMSEPR
      N-PCA0.026130.995880.026350.995660.022980.99677
      Artificial selection0.026630.995530.029450.994550.025370.99615
    Tools

    Get Citation

    Copy Citation Text

    Hexuan Bai, Feng Yang, Danyang Li, Yi Xu, Shunbo Li, Li Chen. Multi-Component Substance Classification and Recognition Based on Surface-Enhanced Raman Spectroscopy[J]. Acta Optica Sinica, 2021, 41(20): 2024001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: Apr. 8, 2021

    Accepted: May. 10, 2021

    Published Online: Sep. 30, 2021

    The Author Email: Chen Li (CL2009@cqu.edu.cn)

    DOI:10.3788/AOS202141.2024001

    Topics