Acta Optica Sinica, Volume. 42, Issue 20, 2024001(2022)
Design of Terahertz Low-Loss Transmission Line and Band-Stop Filter Based on Spoof Surface Plasmon Polaritons
[1] Urteaga M, Griffith Z, Seo M et al. InP HBT technologies for THz integrated circuits[J]. Proceedings of the IEEE, 105, 1051-1067(2017).
[2] Moghadami S, Hajilou F, Agrawal P et al. A 210 GHz fully-integrated OOK transceiver for short-range wireless chip-to-chip communication in 40 nm CMOS technology[J]. IEEE Transactions on Terahertz Science and Technology, 5, 737-741(2015).
[3] Kim J, Jeon S, Kim M et al. H-band power amplifier integrated circuits using 250-nm InP HBT technology[J]. IEEE Transactions on Terahertz Science and Technology, 5, 215-222(2015).
[4] Radisic V, Leong K M K H, Mei X B et al. Power amplification at 0.65 THz using InP HEMTs[J]. IEEE Transactions on Microwave Theory and Techniques, 60, 724-729(2012).
[5] Zhang H C, He P H, Niu L Y et al. Spoof plasmonic metamaterials[J]. Acta Optica Sinica, 41, 0124001(2021).
[6] Liu P K, Huang T J. Terahertz surface plasmon polaritons and their applications[J]. Journal of Infrared and Millimeter Waves, 39, 169-190(2020).
[7] Ren Y, Zhang J J, Gao X X et al. Active spoof plasmonics: from design to applications[J]. Journal of Physics: Condensed Matter, 34, 053002(2021).
[8] Liu X Y, Feng Y J, Zhu B et al. High-order modes of spoof surface plasmonic wave transmission on thin metal film structure[J]. Optics Express, 21, 31155-31165(2013).
[9] Pendry J B, Martín-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 305, 847-848(2004).
[10] Garcia-Vidal F J, Martín-Moreno L, Pendry J B. Surfaces with holes in them: new plasmonic metamaterials[J]. Journal of Optics A: Pure and Applied Optics, 7, S97-S101(2005).
[11] Yang L, Jiang S L, Sun G B et al. Plasmonic enhanced near-infrared absorption of metal-silicon composite microstructure[J]. Acta Optica Sinica, 40, 2124003(2020).
[12] Shen X P, Cui T J, Martin-Cano D et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 40-45(2013).
[13] Ma H F, Shen X P, Cheng Q et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons[J]. Laser & Photonics Reviews, 8, 146-151(2014).
[14] Ye L F, Zhang W, Ofori-Okai B K et al. Super subwavelength guiding and rejecting of terahertz spoof SPPs enabled by planar plasmonic waveguides and Notch filters based on spiral-shaped units[J]. Journal of Lightwave Technology, 36, 4988-4994(2018).
[15] Bai Y K, Chai B, Zheng H X. A wide-band leaky-wave antenna based on spoof surface plasmon polaritons[J]. Study on Optical Communications, 67-72(2021).
[16] Guo Y J, Xu K D, Deng X J et al. Millimeter-wave on-chip bandpass filter based on spoof surface plasmon polaritons[J]. IEEE Electron Device Letters, 41, 1165-1168(2020).
[17] Zhang H C. Fundamental theory, device synthesis and system integration of spoof surface plasmon polaritons[D](2020).
[18] Wang Y, Chen Z, Cui Q. Tunable terahertz broadband bandpass filter based on vanadium dioxide[J]. Acta Optica Sinica, 41, 2023002(2021).
[19] Wang H S, Han K, Sun W et al. Design and experimental investigation of triple-band metamaterial broadband bandpass filter[J]. Acta Optica Sinica, 37, 0623001(2017).
[20] Gao W, Wang J Y, Wu Q N. Design and investigation of a metamaterial terahertz broadband bandpass filter based on dual metallic rings[J]. Laser & Optoelectronics Progress, 58, 0516001(2021).
[21] Wu M, Liang X Y, Sun D X et al. Design of asymmetric rectangular ring resonance cavity electrically adjustable filter based on surface plasmon polaritons[J]. Acta Optica Sinica, 40, 1423001(2020).
[22] Yang H Y, Chen Y P, Xiao G L et al. MIM tunable plasmonic filter embedded with symmetrical sector metal resonator[J]. Acta Optica Sinica, 40, 1124001(2020).
[23] Luo X, Zou X H, Wen K H et al. Narrow-band filter of surface plasmon based on dual-section metal-insulator-metal structure[J]. Acta Optica Sinica, 33, 1123003(2013).
[24] Wang J L, Zhang B Z, Duan J P et al. Flexible dual-stopband terahertz metamaterial filter[J]. Acta Optica Sinica, 37, 1016001(2017).
[25] Zhao J, Wang J X, Qiu W B et al. Surface plasmonic polariton band-stop filters based on graphene[J]. Laser & Optoelectronics Progress, 55, 012401(2018).
[26] Zhu D W, Zeng R M, Tang Z T et al. Design of multiband filter based on spoof surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 57, 172401(2020).
[27] Ye L F, Chen Y, Wang Z Y et al. Compact spoof surface plasmon polariton waveguides and Notch filters based on meander-strip units[J]. IEEE Photonics Technology Letters, 33, 135-138(2021).
[28] Asad A, Yi F, Hang H P et al. Spoof surface plasmon polariton beam splitters integrated with broadband rejection filtering function[J]. Journal of Physics D: Applied Physics, 54, 335105(2021).
[29] Mazdouri B, Honari M M, Mirzavand R. Miniaturized spoof SPPs filter based on multiple resonators or 5G applications[J]. Scientific Reports, 11, 22557(2021).
[30] Zhang L Q, Chan C H. Spoof surface plasmon polariton filter with reconfigurable dual and non-linear notched characteristics[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 68, 2815-2819(2021).
Get Citation
Copy Citation Text
Huali Zhu, Yong Zhang, Longfang Ye, Yukun Li, Zhang Dang, Yang Chen, Ruimin Xu, Bo Yan. Design of Terahertz Low-Loss Transmission Line and Band-Stop Filter Based on Spoof Surface Plasmon Polaritons[J]. Acta Optica Sinica, 2022, 42(20): 2024001
Category: Optics at Surfaces
Received: Mar. 21, 2022
Accepted: Apr. 30, 2022
Published Online: Oct. 18, 2022
The Author Email: Zhang Yong (yongzhang@uestc.edu.cn)