Acta Optica Sinica, Volume. 43, Issue 17, 1714004(2023)

Research Progress on Key Passive Devices for High-Power Fiber Lasers

Zilun Chen1,2,3, Zhixian Li1,2,3、*, Meng Wang1,2,3, Zefeng Wang1,2,3, Xiaojun Xu1,2,3, and Jinbao Chen1,2,3
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan, China
  • 3State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, Hunan, China
  • show less
    References(50)

    [1] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [2] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [3] Wang X L, Zhang H W, Yang B L et al. High-power ytterbium-doped fiber laser oscillator: current situation and future developments[J]. Chinese Journal of Lasers, 48, 0401004(2021).

    [5] Shiner B. The impact of fiber laser technology on the world wide material processing market[C], AF2J.1(2013).

    [6] Lin A X, Xiao Q R, Ni L et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 48, 0903002(2021).

    [7] Xiao H, Pan Z Y, Chen Z L et al. Stable output of 20 kW high beam quality laser based on self-developed optical fiber and device[J]. Chinese Journal of Lasers, 49, 1616002(2022).

    [8] Sun J, Zou S Z, Chen H et al. Recent progress of high-power cladding light stripper[J]. Laser & Optoelectronics Progress, 54, 110001(2017).

    [9] Li H Y, Wu B Y, Wang M et al. 3.2 kW single-mode fiber oscillator based on FBGs inscribed by femtosecond laser[J]. Chinese Journal of Lasers, 49, 0315002(2022).

    [10] Li H, Ye X Y, Wang M et al. Realization of 8 kW fiber oscillator by femtosecond laser writing fiber Bragg grating[J]. Chinese Journal of Lasers, 49, 2316001(2022).

    [11] Li H, Wang M, Wu B Y et al. Fabrication of chirped and tilted fiber Bragg gratings with femtosecond laser[J]. Acta Optica Sinica, 43, 0536001(2023).

    [12] Guo W, Chen Z L, Zhou H et al. Cascaded cladding light extracting strippers for high power fiber lasers and amplifiers[J]. IEEE Photonics Journal, 6, 1501106(2014).

    [13] Yin L, Yan M J, Han Z G et al. High power cladding light stripper using segmented corrosion method: theoretical and experimental studies[J]. Optics Express, 25, 8760-8776(2017).

    [15] Zhou X F, Chen Z L, Hou J et al. High power fiber end-cap with 6 kW output power[J]. High Power Laser and Particle Beams, 27, 120101(2015).

    [16] Jauregui C, Otto H J, Stutzki F et al. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening[J]. Optics Express, 23, 20203-20218(2015).

    [17] Tao R M, Ma P F, Wang X L et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 14, 025002(2017).

    [18] Chen H, Cao J Q, Huang Z H et al. Experimental investigations on TMI and IM-FWM in distributed side-pumped fiber amplifier[J]. IEEE Photonics Journal, 12, 1502413(2020).

    [19] Lei C M, Chen Z L, Leng J Y et al. The influence of fused depth on the side-pumping combiner for all-fiber lasers and amplifiers[J]. Journal of Lightwave Technology, 35, 1922-1928(2017).

    [20] Lei C M, Chen Z L, Gu Y R et al. Loss mechanism of all-fiber cascaded side pumping combiner[J]. High Power Laser Science and Engineering, 6, e56(2018).

    [21] Zhang F, Wang C C, Ning T G et al. Multi-point side pumping scheme of fiber lasers for high-power diode arrays[J]. Optics Communications, 282, 3325-3329(2009).

    [22] Tan Q R, Ge T W, Zhang X X et al. Cascaded combiners for a high power CW fiber laser[J]. Laser Physics, 26, 025102(2016).

    [23] Theeg T, Sayinc H, Neumann J et al. Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers[J]. Optics Express, 20, 28125-28141(2012).

    [24] Gu Y R, Lei C M, Liu J et al. Side-pumping combiner for high-power fiber laser based on tandem pumping[J]. Optical Engineering, 56, 116109(2017).

    [25] Wu J, Ma Y, Yan H. High power (2+1) ×1 taper-fused all-fiber side-pumped combiner[J]. Proceedings of SPIE, 10710, 107103K(2018).

    [26] Wu H S, Song J X, Ma P F et al. Bidirectional tandem-pumped high-brightness 6 kW level narrow-linewidth confined-doped fiber amplifier exploiting the side-coupled technique[J]. Optics Express, 30, 21338-21348(2022).

    [27] Li H, Li H Y, Li Z X et al. Kilowatt-class integrated all-fiber laser oscillator[J]. Acta Optica Sinica, 42, 2306002(2022).

    [28] Xiao H, Leng J Y, Zhou P et al. High power tandem-pumped Yb-doped fiber laser[J]. Chinese Journal of Lasers, 44, 0201007(2017).

    [29] Li Z X, Fu M, Zhao X F et al. Fabrication of side pump combiners when pumping with a laser diode and a fiber laser[J]. Chinese Optics Letters, 20, 021401(2022).

    [30] Peng B, Zhang H T, Yan P et al. Fused taper technique for fiber coupling applications[J]. Laser Technology, 33, 470-472(2009).

    [31] Xiao Q R, Yan P, Ren H C et al. Pump-signal combiner with large-core signal fiber feed-through for fiber lasers and amplifiers[J]. Applied Optics, 52, 409-414(2013).

    [32] Zhao K, Chang X Z, Chen Z L et al. Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique[J]. Optics & Laser Technology, 75, 1-5(2015).

    [33] Liu K, Zhao C, Yang Y F et al. Low beam quality degradation, high-efficiency pump and signal combiner by built-in mode field adapter[J]. Applied Optics, 56, 2804-2809(2017).

    [34] Zou S Z, Chen H, Yu H J et al. High-efficiency (6 + 1) × 1 pump-signal combiner based on low-deformation and high-precision alignment fabrication[J]. Applied Physics B, 123, 288(2017).

    [35] Stachowiak D, Kaczmarek P, Abramski K M. Application of self-fabricated passive fiber components in all-fiber high-power laser and amplifiers systems[J]. Proceedings of SPIE, 10974, 1097403(2018).

    [36] Zheng J K, Zhao W, Zhao B Y et al. High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers[J]. Optical Engineering, 57, 036105(2018).

    [37] Gu Y R, Lei C M, Yang H A et al. High-beam-quality signal and pump combiner with large-mode-area fiber for high-power fiber laser and amplifier[J]. Applied Optics, 58, 1336-1340(2019).

    [38] Liu Y L, Liu K, Yang Y F et al. High power pump and signal combiner for backward pumping structure with two different fused fiber bundle designs by means of pretapered pump fibers[J]. Optics Express, 29, 13344-13358(2021).

    [39] Liu Y, Huang S, Wu W J et al. 5-kW-level Bi-directional high-efficiency pump and signal combiner with negligible beam quality degradation[J]. IEEE Photonics Journal, 14, 7108806(2022).

    [40] Li Z X, Fu M, Tian X et al. Fabrication of a bi-directional pump/signal combiner and application in a 4 kW fiber amplifier[J]. Optics & Laser Technology, 157, 108699(2023).

    [41] Li Z X, Fu M, Xiao H et al. Designation of pump-signal combiner with negligible beam quality degradation for a 15 kW tandem-pumping fiber amplifier[J]. Photonics, 9, 644(2022).

    [42] Chen Z L, Zhou X F, Wang Z F et al. Review of all-fiber signal combiner for high power fiber lasers(Invited)[J]. Infrared and Laser Engineering, 47, 0103005(2018).

    [43] Li Y, Yan D L, Zhao P F et al. High-robustness good-beam-quality 3×1 signal combiner device for 10-kW all-fiber laser combining applications[J]. Proceedings of SPIE, 12169, 121696G(2022).

    [44] Zhou Y Y, Yang A B, Yang G H et al. 3 × 1 fiber signal combiner with high beam quality Gaussian-like beam for a 10kW-level fiber laser[J]. Optics Express, 31, 2780-2791(2023).

    [45] Sun J P, Liu L E, Han L H et al. 100 kW ultra high power fiber laser[J]. Optics Continuum, 1, 1932-1938(2022).

    [46] Lei C M, Gu Y R, Chen Z L et al. Incoherent beam combining of fiber lasers by an all-fiber 7 × 1 signal combiner at a power level of 14 kW[J]. Optics Express, 26, 10421-10427(2018).

    [47] Wu W J, Chen Z L, Wang Z F et al. Beam combining of fiber lasers by a 3 × 1 signal combiner at a power >13 kW[J]. Optical Fiber Technology, 54, 102109(2020).

    [48] Wu W J, Chen Z L, Wang Z F et al. Novel 3 × 1 signal combiner with high-power fiber laser output of high beam quality[J]. Optik, 225, 165353(2021).

    [49] Fu M, Li Z X, Wang Z F et al. Research on a 4 × 1 fiber signal combiner with high beam quality at a power level of 12 kW[J]. Optics Express, 29, 26658-26668(2021).

    [50] Chen Z L, Fu M, Ning Y et al. A new type of optical fiber combiner realizes 20 kW high quality laser output[J]. Chinese Journal of Lasers, 49, 2016002(2022).

    [51] Yuan W Y, Fu M, Li Z X et al. Integrated optical fiber filter and end cap realize 20 kW laser output[J]. High Power Laser and Particle Beams, 34, 111001(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zilun Chen, Zhixian Li, Meng Wang, Zefeng Wang, Xiaojun Xu, Jinbao Chen. Research Progress on Key Passive Devices for High-Power Fiber Lasers[J]. Acta Optica Sinica, 2023, 43(17): 1714004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: May. 9, 2023

    Accepted: Jun. 19, 2023

    Published Online: Sep. 11, 2023

    The Author Email: Li Zhixian (lizhixian_123@163.com)

    DOI:10.3788/AOS230956

    Topics