APPLIED LASER, Volume. 45, Issue 4, 109(2025)
3D Object Instance Segmentation in Substation Scene Based on Improved 3D-BoNet
[13] [13] YI L, ZHAO W, WANG H, et al.GSPN: Generative shape proposal network for 3D instance segmentation in point cloud[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 3942-3951.
[14] [14] HOU J, DAI A,NIENER M. 3D-SIS: 3D semantic instance segmentation of RGB-D scans[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 4416-4425.
[15] [15] YANG B, WANG J N, CLARK R, et al.Learning object bounding boxes for 3D instance segmentation on point clouds[EB/OL]. (2019-09-05)[2023-07-03].2019: 1906.01140. https://arxiv.org/abs/1906.01140v2.
[16] [16] ENGELMANN F, BOKELOH M, FATHI A, et al. 3D-MPA: Multi-proposal aggregation for 3D semantic instance segmentation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 9028-9037.
[17] [17] LIU C, FURUKAWA Y. MASC: Multi-scale affinity with sparse convolution for 3D instancesegmentation[EB/OL]. (2019-02-12)[2023-07-15].2019: 1902.04478. https://arxiv.org/abs/1902.04478v1.
[18] [18] LAHOUD J, GHANEM B, OSWALD M R, et al. 3D instance segmentationviamulti-task metric learning[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 9255-9265.
[19] [19] NARITA G, SENO T, ISHIKAWA T, et al.PanopticFusion: Online volumetric semantic mapping at the level of stuff and things[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau: IEEE, 2019: 4205-4212.
[20] [20] ZHANG F H, GUAN C Y, FANG J, et al.Instance segmentation of LiDAR point clouds[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Paris: IEEE, 2020: 9448-9455.
[21] [21] CHARLES R Q, HAO S, MO K C, et al.PointNet: Deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 77-85.
[22] [22] DING X H, ZHANG X Y, HAN J G, et al.Scaling up your kernels to 31 × 31: Revisiting large kernel design in CNNs[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 11953-11965.
[23] [23] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 1-9.
[24] [24] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
[25] [25] DAI A, CHANG A X, SAVVA M, et al.ScanNet: Richly-annotated 3D reconstructions of indoor scenes[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2432-2443.
[26] [26] WANG X L, LIU S, SHEN X Y, et al.Associatively segmenting instances and semantics in point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 4091-4100.
[27] [27] QI C R, YI L, SU H, et al.PointNet++: Deep hierarchical feature learning on point sets in a metric space[J]. ArXiv e-Prints, 2017: arXiv: 1706.02413.
Get Citation
Copy Citation Text
Wang Dawei, Yang Gang, Hu Fan, Zhang Na, Li Xinyu, Zhang Xingzhong. 3D Object Instance Segmentation in Substation Scene Based on Improved 3D-BoNet[J]. APPLIED LASER, 2025, 45(4): 109
Category:
Received: Aug. 18, 2023
Accepted: Sep. 8, 2025
Published Online: Sep. 8, 2025
The Author Email: Zhang Xingzhong (1659898176@qq.com)