The Journal of Light Scattering, Volume. 34, Issue 1, 10(2022)
The Raman Spectroscopy Study of γ-Cu2(OH)3Cl under Atmospheric and High Pressure
[1] [1] Malcherek T, MD Welch, Williams P A, The atacamite family of minerals - a testbed for quantum spin liquids[J]. Acta Crystallographica Section B, 2018, 74(6): 519-526.
[2] [2] Heinze L, Beltran-Rodriguez R, Bastien G,et al. The magnetic properties of single-crystalline atacamite, Cu2Cl(OH)3[J]. Physica, B. Condensed Matter, 2018, 536: 377-378.
[3] [3] Liu X D, HagihalaM, Zheng X G, et al. Vibrational spectroscopic properties of botallackite-structure basic copper alides[J]. Vibrational Spectroscopy 2011, 56(2): 177-183.
[4] [4] Malcherek T, Mihailova B, MD Welch. Structural phase transitions of clinoatacamite and the dynamic Jahn-Teller effect[J]. Phys. Chem. Minerals, 2017, 44: 307-321.
[5] [5] Grice J D, Szymanski J T, Jambor J L. The crystal structure of clinoatacamite, a new polymorph of Cu2(OH)3Cl[J]. The Canadian Mineralogist, 1996, 34: 73-78.
[6] [6] Cameron E M, Leybourne M I, PalaciosC. Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? [J]. Miner Deposita. 2007, 42(3): 205-218.
[7] [7] Reich M, Palacios C, Parada M A,et al. Atacamite formation by deep saline waters in copper deposits from the Atacama Desert, Chile: evidence from fluid inclusions, groundwater geochemistry, TEM, and 36Cl data[J]. Miner Deposita. 2008, 43(6): 663-675.
[8] [8] Dei L, Ahle A, Baglioni P,et al. Green Degradation Products of Azurite in Wall Paintings: Identification and conservation treatment[J]. Studies in Conservation, 1998, 43(2): 80-88.
[9] [9] Naumova M. M, Pisareva S A, Nechiporenko G O. Green copper pigments of old Russian frescoes[J]. Studies in Conservation, 1990, 35: 81-88.
[10] [10] Nguyen H, Morgan N, Roberts J R,et al. Copper hydroxychloride is more efficacious than copper sulfate in improving broiler chicken's growth performance, both at nutritional and growth-promoting levels[J]. Poultry Science, 2020, 99(12):6964-6973.
[11] [11] Frost R L, Martens W, Kloprogge J T,et al. Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance[J]. Journal of Raman Spectroscopy. 2002, 33(10): 801-806.
[12] [12] Martens W N, Frost R L, Williams P A. Raman and Infrared Spectroscopic Study of the Basic Copper Chloride Minerals - Implications for the Study of the Copper and Brass Corrosion and Bronze Disease[J]. Journal of Mineralogy and Geochemistry, 2003, 178(2): 197-215.
[14] [14] Zheng X G, Kubozono H, Nishiyama K, et al. Coexistence of Long-Range Order and Spin Fluctuation in Geometrically Frustrated Clinoatacamite Cu2Cl(OH)3[J]. Physical Review Letters, 2005, 95(5): 057201.
[15] [15] Liu X D, Zheng X G, Meng D D, et al. Raman spectroscopic study of the frustrated spin 1/2 antiferromagnet clinoatacamite[J]. Journal of Physics Condensed Matter An Institute of Physics Journal, 2013, 25(25):256003.
[16] [16] Liu X D, Meng D D, Masato H,et al. Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides[J]. Chinese Physics B. 2011, 20: 087801.
Get Citation
Copy Citation Text
LUO Yaxiao, ZHANG Jian, LI Yanwei. The Raman Spectroscopy Study of γ-Cu2(OH)3Cl under Atmospheric and High Pressure[J]. The Journal of Light Scattering, 2022, 34(1): 10
Category:
Received: Oct. 18, 2021
Accepted: --
Published Online: Jul. 24, 2022
The Author Email: Jian ZHANG (zhang_jian@jlu.edu.cn)