Chinese Optics, Volume. 12, Issue 6, 1249(2019)
Research progress of remote detection with ultraviolet Raman spectroscopy
[1] [1] COONEY J. Satellite observation using Raman component of laser backscatter[C]. Proceedings of the Symposium of Electromagnetic Sensing of the Earth from Satellites, Polytechnic Institute of Brooklyn Press,1967: P1-P10.
[2] [2] LEONARD D A. Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser[J]. Nature,1967,216(5111): 142-143.
[3] [3] HIRSCHFELD T. Range independence of signal in variable focus remote Raman spectrometry[J]. Applied Optics,1974,13(6): 1435-1437.
[4] [4] MEASURES R M. Laser Remote Sensing: Fundamentals and Applications[M]. New York: John Wiley & Sons,1984.
[5] [5] WU M,RAY M,FUNG H,et al.. Stand-off detection of chemicals by UV Raman spectroscopy[J]. Applied Spectroscopy,2000,54(6): 800-806.
[6] [6] RAY M D,SEDLACEK A J,WU M. Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants[J]. Review of Scientific Instruments,2000,71(9): 3485-3489.
[7] [7] RAMAN C V,KRISHNAN K S. A new type of secondary radiation[J]. Nature,1928,121(3048): 501-502.
[8] [8] FULTON J. Remote detection of explosives using Raman spectroscopy[J]. Proceedings of SPIE,2011,8018: 80181A.
[9] [9] SMITH E,DENT G. Modern Raman Spectroscopy: A Practical Approach[M]. New York: John Wiley & Sons,2013.
[10] [10] BYKOV S,LEDNEV I,IANOUL A,et al.. Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region[J]. Applied Spectroscopy,2005,59(12): 1541-1552.
[11] [11] CLARK R J H,DINES T J. Resonance Raman spectroscopy, and its application to inorganic chemistry. New analytical methods (27)[J]. Angewandte Chemie International Edition in English,1986,25(2): 131-158.
[12] [12] PETTERSSON A,WALLIN S, STMARK H,et al.. Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection[J]. Proceedings of SPIE,2010,7664: 76641K.
[14] [14] ANGEL S M,KULP T J,VESS T M. Remote-Raman spectroscopy at intermediate ranges using low-power cw lasers[J]. Applied Spectroscopy,1992,46(7): 1085-1091.
[15] [15] MCCAIN S T,GUENTHER B D,BRADY D J,et al.. Coded-aperture Raman imaging for standoff explosive detection[J]. Proceedings of SPIE,2012,8358: 83580Q.
[16] [16] CHIRICO R,ALMAVIVA S,BOTTI S,et al.. Stand-off detection of traces of explosives and precursors on fabrics by UV Raman spectroscopy[J]. Proceedings of SPIE,2012,8546: 85460W.
[17] [17] ALMAVIVA S,ANGELINI F,CHIRICO R,et al.. Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration[J]. Proceedings of SPIE,2014,9253: 925303.
[18] [18] GLIMTOFT M,BM··TH P,SAARI H,et al.. Towards eye-safe standoff Raman imaging systems[J]. Proceedings of SPIE,2014,9072: 907210.
[19] [19] CARROLL J A,IZAKE E L,CLETUS B,et al.. Eye-safe UV stand-off Raman spectroscopy for the ranged detection of explosives in the field[J]. Journal of Raman Spectroscopy,2015,46(3): 333-338.
[20] [20] PATRICK C,CAL C J,JEAN D R,et al.. Detection of explosives on surfaces using UV Raman spectroscopy: effect of substrate color[R]. US Army Research Laboratory Adelphi United States,2017.
[21] [21] GAFT M,NAGLI L. Standoff laser-based spectroscopy for explosives detection[J]. Proceedings of SPIE,2007,6739: 673903.
[22] [22] GAFT M,NAGLI L. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials,2008,30(11): 1739-1746.
[23] [23] HOPKINS A J,COOPER J L,PROFETA L T M,et al.. Portable deep-ultraviolet(DUV) Raman for standoff detection[J]. Applied Spectroscopy,2016,70(5): 861-873.
[24] [24] LAMSAL N,SHARMA S K,ACOSTA T E,et al.. Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer[J]. Applied Spectroscopy,2016,70(4): 666-675.
[25] [25] ZHANG L,ZHENG H Y,WANG Y P,et al.. Characteristics of Raman spectrum from stand-off detection[J]. Acta Physica Sinica,2016,65(5): 054206.(in Chinese)
[27] [27] GULATI K K,GAMBHIR V,REDDY M N. Detection of nitro-aromatic compound in soil and sand using time gated Raman spectroscopy[J]. Defence Science Journal,2017,67(5): 588-591.
[28] [28] FARLEY III C,KASSU A,BOSE N,et al.. Short distance standoff Raman detection of extra virgin olive oil adulterated with canola and grapeseed oils[J]. Applied Spectroscopy,2017,71(6): 1340-1347.
[30] [30] GONG D,WANG H,TIAN T Y. Optical design of various optical systems applied in high power laser technology[J]. Infrared and Laser Engineering,2013,42(S1): 118-122.(in Chinese)
[31] [31] YIN X CH,FU Y H. Optical design of common aperture IR/ladar dual-mode imaging seeker[J]. Infrared and Laser Engineering,2015,44(2): 428-431.(in Chinese)
[32] [32] JIA B,CAO G H,LV Q Y,et al.. Optical design of tracking/guiding system with multi-spectrum and common aperture[J]. Infrared and Laser Engineering,2017,46(2): 0218001.(in Chinese)
[33] [33] WANG SH,YAO Q F,DONG M L,et al.. Fore optical system design for remote laser Raman spectrum detection system[J]. Infrared and Laser Engineering,2018,47(4): 0418004.(in Chinese)
[34] [34] HA Y C,LEE J H,KOH Y J,et al.. Development of an ultraviolet Raman spectrometer for standoff detection of chemicals[J]. Current Optics and Photonics,2017,1(3): 247-251.
[36] [36] ROESLER F L,HARLANDER J M. Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning[J]. Proceedings of SPIE,1990,1318: 234-244.
[37] [37] CARTER J C,ANGEL S M,LAWRENCE-SNYDER M,et al.. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Applied Spectroscopy,2005,59(6): 769-775.
[38] [38] LAMSAL N,BARNETT P,ANGEL S M,et al.. Remote UV Raman spectroscopy for planetary exploration using a miniature spatial heterodyne Raman spectrometer[C]. Proceedings of the 47th Lunar and Planetary Science Conference,2016: 1500.
[39] [39] COOPER J,HOPKINS A J,PROFETA L T M,et al.. Deep ultraviolet Raman spectroscopy for eyesafe standoff chemical threat detection[J]. Proceedings of SPIE,2018,10637: 1063714.
[41] [41] SKULINOVA M,LEFEBVRE C,SOBRON P,et al.. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration[J]. Planetary and Space Science,2014,92: 88-100.
[42] [42] JIANG CH ZH. Research on data processing and qualitative analysis of Raman spectrum[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2014.(in Chinese)
[43] [43] HOU Y. Based on correlation coefficient and local SNR Raman spectra recognition technology research[D]. Chengdu: School of Astronautics & Aeronautics,2017.(in Chinese)
[44] [44] XIA J B,ZHU L Q,YAO Q F,et al.. Remote Raman spectral peak searching algorithm based on Kolmogorov-Smirnov test[J]. Chinese Journal of Scientific Instrument,2018,39(3): 141-147.(in Chinese)
[45] [45] HAGEN N,BRADY D J. Coded-aperture DUV spectrometer for stand-off Raman spectroscopy[J]. Proceedings of SPIE,2009,7319: 73190D.
[46] [46] HUFZIGER K T,BYKOV S V,ASHER S A. Ultraviolet Raman wide-field hyperspectral imaging spectrometer for standoff trace explosive detection[J]. Applied Spectroscopy,2017,71(2): 173-185.
[47] [47] YELLAMPALLE B,MARTIN R,WITT K,et al.. Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors[J]. Proceedings of SPIE,2017,10183: 101830E.
Get Citation
Copy Citation Text
HE Yu-qing, WEI Shuai-ying, GUO Yi-xin, ZHAO Man, JIN Wei-qi, REN Lin-mao. Research progress of remote detection with ultraviolet Raman spectroscopy[J]. Chinese Optics, 2019, 12(6): 1249
Category: reviews
Received: Dec. 10, 2018
Accepted: --
Published Online: Jan. 19, 2020
The Author Email: HE Yu-qing (yuqinghe@bit.edu.cn)