Journal of Quantum Optics, Volume. 31, Issue 1, 10801(2025)

Terahertz Broadband Metamaterial Absorber Based on Graphene and Vanadium Dioxide

GUO Qifan and DONG Yunxia*
Author Affiliations
  • School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
  • show less
    References(25)

    [1] [1] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. DOI: 10.1038/nphoton.2007.3.

    [2] [2] CHEN Z, ZHANG B, ZHANG Y, et al. 220 GHz outdoor wireless communication system based on a Schottky-diode transceiver[J]. IEICE Electronics Express, 2016, 13(9):20160282. DOI: 10.1587/elex.13.20160282.

    [3] [3] FERGUSON B, ZHANG X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1):26-33. DOI: 10.1038/nmat708.

    [4] [4] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402. DOI: 10.1103/PhysRevLett.100.207402.

    [5] [5] ZHU W R, RUKHLENKO I D, XIAO F J, et al. Multiband coherent perfect absorption in a water-based metasurface[J]. Optics Express, 2017, 25(14):15737-15745. DOI: 10.1364/OE.25.015737.

    [6] [6] ZHU W R, XIAO F J, RUKHLENKO I D, et al. Wideband visible-light absorption in an ultrathin silicon nanostructure[J]. Optics Express, 2017, 25(5):5781-5786. DOI: 10.1364/OE.25.005781.

    [7] [7] CHEN H H, MA W L, HUANG Z Y, et al. Graphene based materials toward microwave and terahertz absorbing stealth technologies[J]. Advanced Optical Materials, 2019, 7(8):1801318. DOI: 10.1002/adom.201801318.

    [8] [8] LU X Y, WAN R G, ZHANG T Y. Metal-dielectric-metal based narrow band absorber for sensing applications[J]. Optics Express, 2015, 23(23):29842-29847. DOI: 10.1364/OE.23.029842.

    [9] [9] LUO S W, ZHAO J, ZUO D L, et al. Perfect narrow band absorber for sensing applications[J]. Optics Express, 2016, 24(9):9288-9294. DOI: 10.1364/OE.24.009288.

    [10] [10] XIONG H, LI D, ZHANG H Q. Broadband terahertz absorber based on hybrid Dirac semimetal and water[J]. Optics & Laser Technology, 2021, 143:107274. DOI: 10.1016/J.OPTLASTEC.2021.107274.

    [11] [11] WANG J F, LANG T T, HONG Z, et al. Design and fabrication of a triple-band terahertz metamaterial absorber[J]. Nanomaterials, 2021, 11(5):1110. DOI: 10.3390/NANO11051110.

    [12] [12] TAO H, BINGHAM C M, PILON D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D: Applied Physics, 2010, 43(22):225102. DOI: 10.1088/0022-3727/43/22/225102.

    [13] [13] SHEN X P, CUI T J, ZHAO J M, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 2011, 19(10):9401-9407. DOI: 10.1364/OE.19.009401.

    [14] [14] YAO G, LING F R, YUE J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 2016, 24(2):1518-1527. DOI: 10.1364/OE.24.001518.

    [15] [15] SONG Z, WEI M, WANG Z, et al. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces[J]. IEEE Photonics Journal, 2019, 11(2):1-7. DOI: 10.1109/JPHOT.2019.2898981.

    [16] [16] LI H, YU J. Active dual-tunable broadband terahertz absorber based on hybrid graphene-vanadium dioxide metamaterial[J]. OSA Continuum, 2020, 3(8):2143-2155. DOI: 10.1364/OSAC.397243.

    [20] [20] ZHAO Y, HUANG Q P, CAI H L, et al. A broadband and switchable VO2-based perfect absorber at the THz frequency[J]. Optics Communications, 2018, 426:443-449. DOI: 10.1016/j.optcom.2018.05.085.

    [21] [21] VAKIL A, ENGHETA N. Transformation optics using graphene[J]. Science, 2011, 332(6035):1291-1294. DOI: 10.1126/science.1202691.

    [22] [22] LIU K, LEE S, YANG S, et al. Recent progresses on physics and applications of vanadium dioxide[J]. Materials Today, 2018, 21(8):875-896. DOI: 10.1016/j.mattod.2018.03.029.

    [24] [24] KE S L, WANG B, HUANG H, et al. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays[J]. Optics Express, 2015, 23(7):8888-8900. DOI: 10.1364/OE.23.008888.

    [25] [25] XU Z H, WU D, LIU Y M, et al. Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons[J]. Nanoscale Research Letters, 2018, 13(1):143. DOI: 10.1186/s11671-018-2552-z.

    [26] [26] WU G Z, JIAO X F, WANG Y D, et al. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide[J]. Optics Express, 2021, 29(2):2703-2711. DOI: 10.1364/OE.416227.

    [27] [27] ZHENG Z P, ZHENG Y, LUO Y, et al. Terahertz perfect absorber based on flexible active switching of ultra-broad band and ultra-narrowband[J]. Optics Express, 2021, 29(26):42787-42799. DOI: 10.1364/OE.445155.

    [28] [28] ZHANG M, SONG Z Y. Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption[J]. Optics Express, 2021, 29(14):21551-21561. DOI: 10.1364/OE.432967.

    [29] [29] LIU Y, HUANG R, OUYANG Z. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene[J]. Optics Express, 2021, 29(13):20839-20850. DOI: 10.1364/OE.428790.

    Tools

    Get Citation

    Copy Citation Text

    GUO Qifan, DONG Yunxia. Terahertz Broadband Metamaterial Absorber Based on Graphene and Vanadium Dioxide[J]. Journal of Quantum Optics, 2025, 31(1): 10801

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 6, 2024

    Accepted: Apr. 17, 2025

    Published Online: Apr. 17, 2025

    The Author Email: DONG Yunxia (dyx2007@ncepu.edu.cn)

    DOI:10.3788/jqo20253101.0801

    Topics