Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 2, 186(2024)
Elevation parameter estimation for radar altimetry using Proximal Hamiltonian Monte Carlo
[2] [2] BROWN G. The average impulse response of a rough surface and its applications[J]. IEEE Transactions on Antennas and Propagation, 1977,25( 1):67-74. doi:10. 1109/TAP. 1977. 1141536.
[3] [3] HALIMI A,MAILHES C,TOURNERET J Y,et al. Parameter estimation for peaky altimetric waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(3): 1568-1577. doi:10. 1109/TGRS.2012.2205697.
[6] [6] COTTLE R. Nonlinear programming[M]. [S.l.]:Wiley, 1972:588-589.
[7] [7] HALIMI A. From conventional to delay/Doppler altimetry[D]. Toulouse:University of Toulouse, 2013.
[8] [8] HALIMI A, MAILHES C,TOURNERET J Y. Cramer-Rao bounds and estimation algorithms for delay/Doppler and conventional altimetry[C]// The 21st European Signal Processing Conference(EUSIPCO 2013). Marrakech,Morocco:IEEE, 2013: 1-5.
[9] [9] HALIMI A, MAILHES C, TOURNERET J Y, et al. Including antenna mispointing in a semi-analytical model for delay/Doppler altimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(2):598-608. doi:10. 1109/TGRS.2014.2326177.
[10] [10] SANDWELL D T, SMITH W H F. Retracking ERS-1 altimeter waveforms for optimal gravity field recovery [J]. Geophysical Journal International, 2005, 163( 1):79-89. doi:10. 1111/j. 1365-246X.2005.02724.x.
[11] [11] HALIMI A, MAILHES C, TOURNERET J Y, et al. Bayesian estimation of smooth altimetric parameters: application to conventional and delay/Doppler altimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2207-2219. doi:10. 1109/TGRS.2015.2497583.
[12] [12] YANG Lei,ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254-2267. doi: 10. 1109/TGRS. 2015.2498158.
[13] [13] YANG Lei, ZHAO Lifan, ZHOU Song, et al. Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric Bayesian learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4): 1443-1455. doi:10. 1109/JSTARS.2016.2611005.
[14] [14] RANEY R K. A delay/Doppler radar altimeter for ice sheet monitoring[C]// 1995 International Geoscience and Remote Sensing Symposium. Firenze,Italy:IEEE, 1995:862-864. doi:10. 1109/IGARSS. 1995.521080.
[15] [15] BABACAN S D,MOLINA R,KATSAGGELOS A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19( 1):53-63. doi:10. 1109/TIP.2009.2032894.
[16] [16] CHAARI L, TOURNERET J Y, CHAUX C, et al. A hamiltonian Monte Carlo method for non-smooth energy sampling[J]. IEEE Transactions on Signal Processing, 2016,64(21):5585-5594. doi:10. 1109/TSP.2016.2585120.
[17] [17] HANSON K M. Markov Chain Monte Carlo posterior sampling with the Hamiltonian method[J]. Proceedings of SPIE, 2001(4322):456-467.
[18] [18] COMBETTES P L, D?NG ?, V? B C. Proximity for sums of composite functions[J]. Journal of Mathematical Analysis and Applications, 2011,380(2):680-688. doi:10. 1016/j.jmaa.2011.02.079.
[19] [19] PARIKH N, BOYD S. Proximal algorithms[J]. Foundations and Trends? in Optimization, 2014, 1(3): 127-239. doi: 10. 1561/ 2400000003.
[20] [20] GOMMENGINGER C, MARTIN-PUIG C, DINARDO S, et al. Improved altimetric accuracy of SAR altimeters over the ocean: observational evidence from Cryosat-2 SAR and Jason-2[C]// Proceeding of OSTST. San Diego,California:[s.n.], 2011: 1-35.
Get Citation
Copy Citation Text
GUO Muxin, JIANG Ge, HUANG Bo, JING Wen. Elevation parameter estimation for radar altimetry using Proximal Hamiltonian Monte Carlo[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(2): 186
Category:
Received: Jan. 18, 2022
Accepted: --
Published Online: Aug. 14, 2024
The Author Email: JIANG Ge (Jiangge321@163.com)