Acta Optica Sinica, Volume. 44, Issue 18, 1800007(2024)

Progress in Development of Radiometric Benchmark Payload of Solar Reflected Waveband Traced to Space Cryogenic Absolute Radiometer (Invited)

Xin Ye1、*, Wei Fang1, Xiuqing Hu2, Yachao Zhang1, Xiaolong Yi1, Bo Li1, Nan Xu3, Jia Quan4, De Sun5, Ling Wang2, Hongzhao Tang6, and Lijia Gui7
Author Affiliations
  • 1Space Optics Department I, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin , China
  • 2Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China
  • 3Division of Optical Metrology, National Institute of Metrology, China, Beijing 100029, China
  • 4Key Laboratory of Technology on Space Energy Conversion, Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 5School of Chemical Engineering, Changchun University of Technology, Changchun 130012, Jilin , China
  • 6Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of the People’s Republic of China, Beijing 100844, China
  • 7Thermal Control Engineering Technology Laboratory, Shanghai Institute of Satellite Engineering, Shanghai 201109, China
  • show less
    Figures & Tables(21)
    Illustration of TRUTHS mission (this figure comes from Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS)—a ‘gold standard’ imaging spectrometer in space to support climate emergency research)
    Illustration of on-orbit traceability chain for the TRUTHS mission (this figure comes from https:∥www.npl.co.uk/earth-observation/truths/satellite-calibration)
    Schematic representation of the CLARREO Pathfinder project (this figure comes from https:∥clarreo-pathfinder.larc.nasa.gov/calibration/)
    Schematic representation of the independent calibration approach for CLARREO Pathfinder (this figure comes from https:∥clarreo-pathfinder.larc.nasa.gov/calibration/)
    Principle of radiometric benchmark payload
    Principle of electric substitution measurement
    Prototype of space cryogenic absolute radiometer
    Modal analysis of space cryogenic absolute radiometer
    Lightpath of Earth-Moon hyperspectral imager
    Residual LPS under different wavebands with angle of wedge to be 0.81°
    Spectral radiance of the pupil of the hyperspectral imager with solar altitude angle of 30° and albedo of 0.3
    Signal-to-noise ratio of hyperspectral imager with solar altitude angle of 30° and albedo of 0.3. (a) Visible-near-infrared waveband; (b) shortwave infrared waveband
    Radiometric traceability chain on the on-orbit benchmark payload
    Optical design of solar monochromator
    Diameter at main stop of space cryogenic absolute radiometer
    Radiometric calibration diagram of the Earth-Moon imaging spectrometer traced to the national cryogenic radiometer
    • Table 1. Parameter comparison of LIBRA, TRUTHS, and CLARREO projects

      View table

      Table 1. Parameter comparison of LIBRA, TRUTHS, and CLARREO projects

      Project

      LIBRA

      (CAS)

      TRUTHS

      (NPL)

      CLARREO/CLARREO Pathfinder

      (NASA)

      SI traceable measurement of the solar reflected spectrumSpectral range0.4-2.3 μm0.32-2.4 μm0.32-2.3 μm/0.35-2.3 μm
      Spectral resolution<10 nm4-10 nm8 nm/6 nm
      Signal-to-noise ratio>300<50

      >33 (380-900 nm)/>33 (380-900 nm)

      >20 (others)/>20 (others)

      Uncertainty

      0.8%

      (k=1,uncertainty achieved by single measurements)

      <0.3% (k=2,climate benchmark, uncertainty achieved by multiple measurements);

      <1.0% (calibration/validation,k=2, uncertainty achieved by single measurements);

      <2.0% (land surface imaging,k=2,uncertainty achieved by single measurements)

      0.3% (k=2,uncertainty achieved by multiple measurements)/0.3% (k=1,uncertainty achieved by multiple measurements)
      Spatial resolution<200 m

      <300 m (climate benchmark);

      50-100 m (calibration/validation, land surface imaging)

      500 m/500 m
      Swath60 km100 km100 km/70 km
      Benchmark sourceSpace cryogenic absolute radiometerSpace cryogenic absolute radiometerCryogenic absolute radiometer in lab
    • Table 2. Parameters of CLARREO Pathfinder project

      View table

      Table 2. Parameters of CLARREO Pathfinder project

      IndicatorValue
      Radiometric uncertainty0.3% (k=1, uncertainty achieved by multiple measurements)
      Spectral range350-2300 nm
      Spectral sampling/resolution3 nm/6 nm
      Polarization sensitivity<1% (350-1800 nm), <2% (1800-2300 nm)
      Swath width10° (70 km at nadir)
      Spatial resolution0.5 km (nadir, nominal)
      Sampling rate15 Hz
    • Table 3. Initial structural parameters of the solar monochromator

      View table

      Table 3. Initial structural parameters of the solar monochromator

      SubsystemParameterTechnical indicator
      TelescopeOptical structureRitchey-Chretien
      Field of view±0.25°
      MonochromatorOptical structureCzerny-Turner
      Waveband350-2400 nm
      Spectral resolution<8 nm
    • Table 4. Radiance uncertainty of tunable laser integral sphere Lambert light source traced to cryogenic absolute radiometer

      View table

      Table 4. Radiance uncertainty of tunable laser integral sphere Lambert light source traced to cryogenic absolute radiometer

      Major impact factorUncertainty factorUncertainty /%
      Radiance sourceRadiance uniform0.1
      Polarization/
      Speckle0.003
      Stability0.03
      Standard radiancemeterMeasure uncertainty0.42
      HeperspectralimagerNonlinearity0.2
      Repetitiveness0.33
      Stray light coefficient0.2

      Spectral

      mismatching error

      0.1
      Spectral sampling0.1
      Combined uncertainty0.63
    • Table 5. Uncertainty of solar reflected waveband radiation measurement benchmark payload

      View table

      Table 5. Uncertainty of solar reflected waveband radiation measurement benchmark payload

      ComponentImpact factorTechnical indicator /%
      SCARRadiometric uncertainty (u00.03
      Radiance CalibrationSolar monochromatorPower stability (u10.20
      Transfer radiometerOptical power measurement (u20.15
      Optical-radiance conversion (u30.08
      Radiance measurement (u40.15

      Integrating

      sphere

      Homogeneity (u50.25
      stray light (u60.25
      EMISRadiance measurement (u70.30
      Response linearity (u80.15
      Numerical integration (u90.35
      Refelcted earth radianceCombined uncertainty (u0.68
    Tools

    Get Citation

    Copy Citation Text

    Xin Ye, Wei Fang, Xiuqing Hu, Yachao Zhang, Xiaolong Yi, Bo Li, Nan Xu, Jia Quan, De Sun, Ling Wang, Hongzhao Tang, Lijia Gui. Progress in Development of Radiometric Benchmark Payload of Solar Reflected Waveband Traced to Space Cryogenic Absolute Radiometer (Invited)[J]. Acta Optica Sinica, 2024, 44(18): 1800007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 4, 2024

    Accepted: Jul. 17, 2024

    Published Online: Sep. 11, 2024

    The Author Email: Xin Ye (yexin@ciomp.ac.cn)

    DOI:10.3788/AOS241129

    CSTR:32393.14.AOS241129

    Topics