High Power Laser and Particle Beams, Volume. 35, Issue 1, 012002(2023)
Progress of pair production from vacuum in strong laser fields
[1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).
[2] Zhang Jie. A new horizon high field physics[J]. Physics, 26, 643-649(1997).
[3] Schrödinger E. Quantisierung als Eigenwertproblem[J]. Annalen der Physik, 384, 361-376(1926).
[4] [4] Gdon W. Der Comptoneffekt nach der Schrdingerschen Theie[J]. Zeitschrift für Physik, 1926, 40(1): 117133. Klein O. Quantentheie und fünfdimensionale Relativittstheie[J]. Zeitschrift für Physik, 1926, 37(12): 895906.
[5] [5] Dirac P A M. The principles of quantum mechanics[M]. 4th ed. Oxfd: Oxfd University Press, 1982.
[6] Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review Journals Archive, 82, 664-679(1951).
[7] Bulanov S S, Esirkepov T Z, Thomas A G R, et al. Schwinger limit attainability with extreme power lasers[J]. Physical Review Letters, 105, 220407(2010).
[8] Fedotov A M, Narozhny N B, Mourou G, et al. Limitations on the attainable intensity of high power lasers[J]. Physical Review Letters, 105, 080402(2010).
[9] Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 14, 054401(2011).
[10] Cowan T, Backe H, Bethge K, et al. Observation of correlated narrow-peak structures in positron and electron spectra from superheavy collision systems[J]. Physical Review Letters, 56, 444-447(1986).
[11] Dunne G V. Extreme quantum field theory and particle physics with IZEST[J]. The European Physical Journal Special Topics, 223, 1055-1061(2014).
[12] Mocken G R, Keitel C H. FFT-split-operator code for solving the Dirac equation in 2+1 dimensions[J]. Computer Physics Communications, 178, 868-882(2008).
[13] Ruf M, Bauke H, Keitel C H. A real space split operator method for the Klein–Gordon equation[J]. Journal of Computational Physics, 228, 9092-9106(2009).
[14] Furry W H. On bound states and scattering in positron theory[J]. Physical Review Journals Archive, 81, 115-124(1951).
[15] Aleksandrov I A, Di Piazza A, Plunien G, et al. Stimulated vacuum emission and photon absorption in strong electromagnetic fields[J]. Physical Review D, 105, 116005(2022).
[16] Kim S P, Page D N. Schwinger pair production via instantons in strong electric fields[J]. Physical Review D, 65, 105002(2002).
[17] Dietrich D D, Dunne G V. Gutzwiller's trace formula and vacuum pair production[J]. Journal of Physics A: Mathematical and Theoretical, 40, F825-F830(2007).
[18] Bergues B, Ni Yongfeng, Helm H, et al. Experimental study of photodetachment in a strong laser field of circular polarization[J]. Physical Review Letters, 95, 263002(2005).
[19] Tanaka K A, Spohr K M, Balabanski D L, et al. Current status and highlights of the ELI-NP research program[J]. Matter and Radiation at Extremes, 5, 024402(2020).
[20] Wang Weimin, Sheng Zhengming, Gibbon P, et al. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 9911-9916(2018).
[21] Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 4, 014401(2019).
[22] Wen M, Tamburini M, Keitel C H. Polarized laser-WakeField-accelerated kiloampere electron beams[J]. Physical Review Letters, 122, 214801(2019).
[23] Geng Xuesong, Ji Liangliang, Shen B F, et al. Quantum reflection above the classical radiation-reaction barrier in the quantum electro-dynamics regime[J]. Communications Physics, 2, 66(2019).
[24] Chen P. Laser cosmology[J]. The European Physical Journal Special Topics, 223, 1121-1129(2014).
[25] Jiang M, Su W, Lu X, et al. Electron-positron pair creation induced by quantum-mechanical tunneling[J]. Physical Review A, 83, 053402(2011).
[26] Lv Q Z, Li Y J, Grobe R, et al. Quantum mechanical tunneling in multifield-induced pair creation from vacuum[J]. Physical Review A, 88, 033403(2013).
[27] Liu Yan, Lv Q Z, Li Yutong, et al. Pair creation induced by transitions between electronic and positronic bound states[J]. Physical Review A, 91, 052123(2015).
[28] Schützhold R, Gies H, Dunne G. Dynamically assisted Schwinger mechanism[J]. Physical Review Letters, 101, 130404(2008).
[29] Di Piazza A, Lötstedt E, Milstein A I, et al. Barrier control in tunneling e+ e− photoproduction[J]. Physical Review Letters, 103, 170403(2009).
[30] Bulanov S S, Mur V D, Narozhny N B, et al. Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum[J]. Physical Review Letters, 104, 220404(2010).
[31] Taya H. Dynamically assisted Schwinger mechanism and chirality production in parallel electromagnetic field[J]. Physical Review Research, 2, 023257(2020).
[32] Hubbell J H. Review and history of photon cross section calculations[J]. Physics in Medicine & Biology, 51, R245-R262(2006).
[33] Jiang M, Lv Q Z, Sheng Z M, et al. Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states[J]. Physical Review A, 87, 042503(2013).
[34] Jiang Miao, Zheng Xiaoran, Lin Nansheng, . Multi-photon transition effects under different external field widths in electron-positron-pair creation process[J]. Acta Physica Sinica, 70, 231202(2021).
[35] Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 79, 1626-1629(1997).
[36] Bamber C, Boege S J, Koffas T, et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses[J]. Physical Review D, 60, 092004(1999).
[37] Schmidt S, Blaschke D, Röpke G, et al. A quantum kinetic equation for particle production in the Schwinger mechanism[J]. International Journal of Modern Physics E, 7, 709-722(1998).
[38] Dumlu C K. Schwinger vacuum pair production in chirped laser pulses[J]. Physical Review D, 82, 045007(2010).
[39] [39] Kohlfürst C. Electronpositron pair production in structured pulses of electric fields[DBOL]. arXiv preprint arXiv: 1212.0880, 2012.
[40] Nuriman A, Xie Baisong, Li Ziliang, et al. Enhanced electron–positron pair creation by dynamically assisted combinational fields[J]. Physics Letters B, 717, 465-469(2012).
[41] Abdukerim N, Li Ziliang, Xie Baisong. Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields[J]. Chinese Physics B, 26, 020301(2017).
[42] [42] Greiner W, Müller B, Rafelski J. Quantum electrodynamics of strong fields[M]. Berlin, Heidelberg: Springer, 1985.
[43] Dumlu C K. Multidimensional quantum tunneling in the Schwinger effect[J]. Physical Review D, 93, 065045(2016).
[44] Akal I, Moortgat-Pick G. Quantum tunnelling from vacuum in multidimensions[J]. Physical Review D, 96, 096027(2017).
[45] Ahmad I I, Austin S M, Back B B, et al. Search for narrow sum-energy lines in electron-positron pair emission from heavy-ion collisions near the Coulomb barrier[J]. Physical Review Letters, 75, 2658-2661(1995).
[46] Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 101, 200403(2008).
[47] Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 16, 2109-2114(2008).
[48] Bandrauk A D, Shen Hai. High-order split-step exponential methods for solving coupled nonlinear Schrödinger equations[J]. Journal of Physics A: Mathematical and General, 27, 7147-7155(1994).
[49] Granz L F, Mathiak O, Villalba-Chávez S, et al. Electron-positron pair production in oscillating electric fields with double-pulse structure[J]. Physics Letters B, 793, 85-89(2019).
[50] Ehlotzky F. Atomic phenomena in bichromatic laser fields[J]. Physics Reports, 345, 175-264(2001).
[51] Schafer K J, Kulander K C. Phase-dependent effects in multiphoton ionization induced by a laser field and its second harmonic[J]. Physical Review A, 45, 8026-8033(1992).
[52] Kim I J, Kim C M, Kim H T, et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field[J]. Physical Review Letters, 94, 243901(2005).
[53] Gong Xiaochun, He Peilun, Song Qiying, et al. Two-dimensional directional proton emission in dissociative ionization of H2[J]. Physical Review Letters, 113, 203001(2014).
[54] Braß J, Milbradt R, Villalba-Chávez S, et al. Two-color phase-of-the-phase spectroscopy applied to nonperturbative electron-positron pair production in strong oscillating electric fields[J]. Physical Review A, 101, 043401(2020).
[55] Skruszewicz S, Tiggesbäumker J, Meiwes-Broer K H, et al. Two-color strong-field photoelectron spectroscopy and the phase of the phase[J]. Physical Review Letters, 115, 043001(2015).
[56] Almajid M A, Zabel M, Skruszewicz S, et al. Two-color phase-of-the-phase spectroscopy in the multiphoton regime[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 50, 194001(2017).
[57] Tulsky V A, Almajid M A, Bauer D. Two-color phase-of-the-phase spectroscopy with circularly polarized laser pulses[J]. Physical Review A, 98, 053433(2018).
[58] Würzler D, Eicke N, Möller M, et al. Velocity map imaging of scattering dynamics in orthogonal two-color fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 015001(2018).
[59] [59] Der L. Frequency modulation (FM) tutial[R]. Silicon Labaties Inc, 2008.
[60] Gong C, Li Z L, Xie Baisong, et al. Electron-positron pair production in frequency modulated laser fields[J]. Physical Review D, 101, 016008(2020).
[61] Brézin E, Itzykson C. Pair production in vacuum by an alternating field[J]. Physical Review D, 2, 1191-1199(1970).
[62] Gong C, Li Z L, Li Y J, et al. Resolving rapidly chirped external fields with Dirac vacuum[J]. Physical Review A, 101, 063405(2020).
[63] [63] Mel L, Wolf E. Optical coherence quantum optics[M]. Cambridge: Cambridge University Press, 1995.
[64] Page C H. Instantaneous power spectra[J]. Journal of Applied Physics, 23, 103-106(1952).
[65] Lampard D G. Generalization of the Wiener-Khintchine theorem to nonstationary processes[J]. Journal of Applied Physics, 25, 802-803(1954).
[66] Liu Xinwei, Yuan Yaxiang. A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties[J]. Mathematical Programming, 125, 163-193(2010).
[67] [67] Dechter R. Constraint processing[M]. San Francisco: Mgan Kaufmann Publishers, 2003.
[68] Cheng T, Su Q, Grobe R. Introductory review on quantum field theory with space–time resolution[J]. Contemporary Physics, 51, 315-330(2010).
[69] Dong S S, Chen Min, Su Q, et al. Optimization of spatially localized electric fields for electron-positron pair creation[J]. Physical Review A, 96, 032120(2017).
[70] Lv Q Z, Unger J, Li Yutong, et al. Spatially dependent electron-positron pair creation rate[J]. EPL (Europhysics Letters), 116, 40003(2016).
[71] Gong C, Li Z L, Li Y J. Enhanced pair creation by an oscillating potential with multiple well-barrier structures in space[J]. Physical Review A, 98, 043424(2018).
[72] Wang Li, Wu Binbing, Xie Baisong. Electron-positron pair production in an oscillating Sauter potential[J]. Physical Review A, 100, 022127(2019).
[73] Ren Na, Wang Jiaxiang, Li Ankang, et al. Pair production in an intense laser pulse: the effect of pulse length[J]. Chinese Physics Letters, 29, 071201(2012).
[74] Lv Q Z, Liu Yan, Li Y J, et al. Noncompeting channel approach to pair creation in supercritical fields[J]. Physical Review Letters, 111, 183204(2013).
[75] Liu Yan, Jiang M, Lv Q Z, et al. Population transfer to supercritical bound states during pair creation[J]. Physical Review A, 89, 012127(2014).
[76] Rodriguez-Lopez P, Kort-Kamp W J M, Dalvit D A R, et al. Casimir force phase transitions in the graphene family[J]. Nature Communications, 8, 14699(2017).
[77] Xie Baisong, Li Ziliang, Tang Suo. Electron-positron pair production in ultrastrong laser fields[J]. Matter and Radiation at Extremes, 2, 225-242(2017).
[78] King B, Di Piazza A, Keitel C H. A matterless double slit[J]. Nature Photonics, 4, 92-94(2010).
[79] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 78, 309-371(2006).
[80] Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 113, 014801(2014).
[81] Lv Q Z, Su Q, Grobe R. Manipulation of the vacuum to control its field-induced decay[J]. Physical Review Letters, 121, 183606(2018).
[82] Akkermans E, Dunne G V. Ramsey fringes and time-domain multiple-slit interference from vacuum[J]. Physical Review Letters, 108, 030401(2012).
[83] Krekora P, Su Q, Grobe R. Klein paradox in spatial and temporal resolution[J]. Physical Review Letters, 92, 040406(2004).
[84] Su Q, Grobe R. Dirac vacuum as a transport medium for information[J]. Physical Review Letters, 122, 023603(2019).
[85] Elitzur A C, Vaidman L. Quantum mechanical interaction-free measurements[J]. Foundations of Physics, 23, 987-997(1993).
[86] Kwiat P, Weinfurter H, Herzog T, et al. Interaction-free measurement[J]. Physical Review Letters, 74, 4763-4766(1995).
[87] Gong C, Penwell A, Li Z L, et al. Transition between coherent and incoherent chirping mechanisms in electron-positron pair creation[J]. Journal of the Optical Society of America B, 37, 1098-1108(2020).
[88] Gong C, Su Q, Grobe R. Machine learning techniques in the examination of the electron-positron pair creation process[J]. Journal of the Optical Society of America B, 38, 3582-3591(2021).
[89] [89] Lin E, Yang Xu. Computation of the timedependent Dirac equation with physicsinfmed neural wks[DBOL]. arXiv preprint arXiv: 2204.02959, 2022.
Get Citation
Copy Citation Text
Chi Gong, Ziliang Li, Yingjun Li. Progress of pair production from vacuum in strong laser fields[J]. High Power Laser and Particle Beams, 2023, 35(1): 012002
Category: Strong Field Quantum Electrodynamics Excited by Super Intense Laser Pulse
Received: May. 8, 2022
Accepted: --
Published Online: Feb. 10, 2023
The Author Email: Li Ziliang (zlli@cumtb.edu.cn), Li Yingjun (lyj@aphy.iphy.ac.cn)