International Journal of Orthopaedics, Volume. 46, Issue 4, 211(2025)
Advances in decellularized matrix preparation and therapeutic applications in osteoarthritis treatment
[1] [1] Long H, Zeng X, Liu Q, et al. Burden of osteoarthritis in China, 1990–2017: findings from the Global Burden of Disease Study 2017[J]. Lancet Rheumatol, 2020, 2(3): e164-e172.
[2] [2] Yelin E, Weinstein S, King T. The burden of musculoskeletal diseases in the United States[J]. Semin Arthritis Rheum, 2016, 46(3): 259-260.
[3] [3] GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Rheumatol, 2023, 5(9): e508-e522.
[4] [4] Chakraborty J, Roy S, Ghosh S. Regulation of decellularized matrix mediated immune response[J]. Biomater Sci, 2020, 8(5): 1194-1215.
[5] [5] Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
[6] [6] Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 Study[J]. Ann Rheum Dis, 2014, 73(7): 1323-1330.
[7] [7] Liu C, Pei M, Li Q, et al. Decellularized extracellular matrix mediates tissue construction and regeneration[J]. Front Med, 2022, 16(1): 56-82.
[8] [8] Long J, Qin Z, Chen G, et al. Decellularized extracellular matrix (d-ECM): the key role of the inflammatory process in pre-regeneration after implantation[J]. Biomater Sci, 2023, 11(4): 1215-1235.
[9] [9] Deng M, Tan J, Hu C, et al. Modification of PLGA scaffold by MSC-derived extracellular matrix combats macrophage inflammation to initiate bone regeneration via TGF--induced protein[J]. Adv Healthc Mater, 2020, 9(13): e2000353.
[10] [10] Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, et al. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds[J]. Int J Mol Sci, 2020, 21(15): 5447.
[11] [11] Dehghani S, Aghaee Z, Soleymani S, et al. An overview of the production of tissue extracellular matrix and decellularization process[J]. Cell Tissue Bank, 2024, 25(1): 369-387.
[12] [12] de Wit RJJ, van Dis DJ, Bertrand ME, et al. Scaffold-based tissue engineering: supercritical carbon dioxide as an alternative method for decellularization and sterilization of dense materials[J]. Acta Biomater, 2023, 155: 323-332.
[13] [13] Shojaie L, Rahimi Y, Zolbin MM, et al. Characterization methods of acellularized tissue and organs[J]. Adv Exp Med Biol, 2021, 1345: 1-6.
[14] [14] Somuncu S. Decellularization concept in regenerative medicine[J]. Adv Exp Med Biol, 2020, 1212: 71-85.
[15] [15] Zhang X, Chen X, Hong H, et al. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering[J]. Bioact Mater, 2022, 10: 15-31.
[16] [16] Chai Y, Xu J, Zhang Y, et al. Evaluation of decellularization protocols for production of porcine small intestine submucosa for use in abdominal wall reconstruction[J]. Hernia, 2020, 24(6): 1221-1231.
[17] [17] Lin T, Liu S, Chen S, et al. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects[J]. Acta Biomater, 2018, 73: 326-338.
[18] [18] Yeleswarapu S, Chameettachal S, Bera AK, et al. Smooth muscle matrix bioink promotes myogenic differentiation of encapsulated adipose-derived stem cells[J]. J Biomed Mater Res A, 2022, 110(11): 1761-1773.
[19] [19] Wu H, Yin G, Pu X, et al. Preliminary study on the antigen-removal from extracellular matrix via different decellularization[J]. Tissue Eng Part C Methods, 2022, 28(6): 250-263.
[20] [20] Khajavi M, Hajimoradloo A, Zandi M, et al. Fish cartilage: a promising source of biomaterial for biological scaffold fabrication in cartilage tissue engineering[J]. J Biomed Mater Res A, 2021, 109(9): 1737-1750.
[21] [21] Li S, Liu P, Liu J, et al. Three-dimensional bioprinting for musculoskeletal regeneration and disease modeling[J]. Int J Bioprint, 2024, 10(1): 1037.
[22] [22] Marvin JC, Mochida A, Paredes J, et al. Detergent-free decellularization preserves the mechanical and biological integrity of murine tendon[J]. Tissue Eng Part C Methods, 2022, 28(12): 646-655.
[23] [23] Wolf MT, Daly KA, Brennan-Pierce EP, et al. A hydrogel derived from decellularized dermal extracellular matrix[J]. Biomaterials, 2012, 33(29): 7028-7038.
[24] [24] Chen Q, Wu H, Wang J, et al. Copper-epigallocatechin gallate enhances therapeutic effects of 3D-printed dermal scaffolds in mitigating diabetic wound scarring[J]. ACS Appl Mater Interfaces, 2023, 15(23): 27880-27896.
[25] [25] Chen L, Li Z, Zheng Y, et al. 3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization[J]. Bioact Mater, 2022, 10: 236-246.
[26] [26] Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink[J]. Nat Commun, 2014, 5: 3935.
[27] [27] Benders KEM, Terpstra ML, Levato R, et al. Fabrication of decellularized cartilage-derived matrix scaffolds[J]. J Vis Exp, 2019, 143: e58443.
[28] [28] Kim JS, Choi JS, Cho YW. Cell-free hydrogel system based on a tissue-specific extracellular matrix for in situ adipose tissue regeneration[J]. ACS Appl Mater Interfaces, 2017, 9(10): 8581-8588.
[29] [29] Shakya D, Das SK, Ramamurthi A, et al. Pre-clinical evaluation of thermosensitive decellularized adipose tissue/platelet-rich plasma interpenetrating polymer network hydrogel for wound healing[J]. Mater Today Bio, 2022, 16: 100425.
[30] [30] Bo Q, Yan L, Li H, et al. Decellularized dermal matrix-based photo-crosslinking hydrogels as a platform for delivery of adipose derived stem cells to accelerate cutaneous wound healing[J]. Mater Des, 2020, 196: 109152.
[31] [31] Lin Z, Rao Z, Chen J, et al. Bioactive decellularized extracellular matrix hydrogel microspheres fabricated using a temperature-controlling microfluidic system[J]. ACS Biomater Sci Eng, 2022, 8(4): 1644-1655.
[32] [32] Das SK, Varghese S. Genipin-crosslinked adipose stem cell derived extracellular matrix-nano graphene oxide composite sponge for skin tissue engineering[J]. J Mater Chem B, 2018, 6(16): 2498-2511.
[33] [33] Wang L, Liu F, Zhai X, et al. An adhesive gelatin-coated small intestinal submucosa composite hydrogel dressing aids wound healing[J]. Int J Biol Macromol, 2023, 241: 124622.
[34] [34] Zhang K, Zhu Y, Wang T, et al. Lubricating micro-interface assisted general strategy for preparing dECM-microparticle–based heterogeneous granular inks toward 3D printing[J]. Adv Sci, 2023, 10(12): 2206271.
[35] [35] Amemiya M, Tsuji K, Katagiri H, et al. Synovial fluid-derived mesenchymal cells have non-inferior chondrogenic potential and can be utilized for regenerative therapy as substitute for synovium-derived cells[J]. BiochemBiophys Res Commun, 2020, 523(2): 465-472.
[36] [36] Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization[J]. Acta Biomater, 2014, 10(5): 1806-1816.
[37] [37] Xu F, Zheng Z, Yao M, et al. A regulatory mechanism of a stepwise osteogenesis-mimicking decellularized extracellular matrix on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells[J]. J Mater Chem B, 2022, 10(32): 6171-6180.
Get Citation
Copy Citation Text
Wang Ximing, Xu Junjie, Zhao Jinzhong. Advances in decellularized matrix preparation and therapeutic applications in osteoarthritis treatment[J]. International Journal of Orthopaedics, 2025, 46(4): 211
Category:
Received: Mar. 25, 2025
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: Zhao Jinzhong (jzzhao@sjtu.edu.cn)