Journal of Innovative Optical Health Sciences, Volume. 18, Issue 2, 2430002(2025)
Review of polarization-based technology for biomedical applications
[1] A. L. Gratiet, A. Bendandi, C. J. R. Sheppard, A. Diaspro. Polarimetric optical scanning microscopy of zebrafish embryonic development using the coherency matrix. J. Biophoton., 14, e202000494(2021).
[2] X. Tian, X. Tu, K. Della Croce, G. Yao, H. Cai, N. Brock, S. Pau, R. Liang. Multi-wavelength quantitative polarization and phase microscope. Biomed. Opt. Exp., 10, 1638-1648(2019).
[3] E. Du, H. He, N. Zeng, C. Liu, Y. Guo, R. Liao, M. Sun, Y. He, H. Ma. Characteristic features of Mueller matrix patterns for polarization scattering model of biological tissues. J. Innov. Opt. Health Sci., 7, 1350028(2014).
[4] H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, H. Ma. Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging. J. Biomed. Opt., 19, 106007(2014).
[5] J. Li, J. Wei, H. Liu, J. Wan, T. Huang, H. Wang, R. Liao, M. Yan, H. Ma. Polarization fingerprint for microalgae classification. Opt. Lasers Eng., 166, 107567(2023).
[6] J. Li, R. Liao, C. Guan, H. Wang, Z. Zhuo, Y. Zeng, H. Ma. Particulate Mueller matrix polarimetry. Opt. Laser Technol., 158, 108780(2023).
[7] Y. Ding, S. Pau. Circularly and elliptically polarized light under water and the Umov effect. Light-Sci. Appl., 8, 32(2019).
[8] R. Liao, N. Zeng, M. Zeng, Y. He, H. Ma. Estimation and extraction of the aerosol complex refractive index based on Stokes vector measurements. Opt. Lett., 44, 4877-4880(2019).
[9] Y. Chen, N. Zeng, S. Chen, D. Zhan, Y. He, H. Ma. Study on morphological analysis of suspended particles using single angle polarization scattering measurements. J. Quant. Spectrosc. Radiat. Transf., 224, 556-565(2019).
[10] W. Guo, N. Zeng, R. Liao, Q. Xu, J. Guo, Y. He, H. Di, D. Hua, H. Ma. Simultaneous retrieval of aerosol size and composition by multi-angle polarization scattering measurements. Opt. Lasers Eng., 149, 106799(2022).
[11] J. R. P. Angel, R. Illing, P. G. Martin. Physical sciences: Circular polarization of twilight. Nature, 238, 389-390(1972).
[12] J. Qi, D. S. Elson. Mueller polarimetric imaging for surgical and diagnostic applications: A review. J. Biophoton., 10, 950-982(2017).
[13] L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, L. T. Perelman. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus. Nat. Med., 16, 603-606(2010).
[14] S. L. Jacques, J. C. Ramella-Roman, K. Lee. Imaging skin pathology with polarized light. J. Biomed. Opt., 7, 329-340(2002).
[15] W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau. Orthogonal polarization spectral imaging: A new method for study of the microcirculation. Nat. Med., 5, 1209-1212(1999).
[16] A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, I. J. Bigio. Diffuse backscattering Mueller matrices of highly scattering media. Opt. Exp., 1, 441-453(1997).
[17] C. Brosseau. Fundamentals of Polarized Light: A Statistical Optics Approach(1998).
[18] H. He, R. Liao, N. Zeng, P. Li, Z. Chen, X. Liu, H. Ma. Mueller matrix polarimetry — an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol., 37, 2534-2548(2019).
[19] Y. Wang, Y. Guo, N. Zeng, D. Chen, H. He, H. Ma. Study on the validity of 3×3 Mueller matrix decomposition. J. Biomed. Opt., 20, 065003(2015).
[20] J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, Z. Chen. Use of polar decomposition for the diagnosis of oral precancer. Appl. Opt., 46, 3038-3045(2007).
[21] M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, P. K. Gupta. Polar decomposition of 3×3 Mueller matrix: A tool for quantitative tissue polarimetry. Opt. Exp., 14, 9324-9337(2006).
[22] R. C. Jones. A new calculus for the treatment of optical systems I. description and discussion of the calculus. J. Opt. Soc. Am., 31, 488-493(1941).
[23] R. C. Jones. A new calculus for the treatment of optical systems. IV. J. Opt. Soc. Am., 32, 486-493(1942).
[24] R. C. Jones. A new calculus for the treatment of optical systems V. A more general formulation and description of another calculus. J. Opt. Soc. Am., 37, 107-110(1947).
[25] R. C. Jones. A new calculus for the treatment of optical systems VII. Properties of the N-matrices. J. Opt. Soc. Am., 38, 671-685(1948).
[26] R. C. Jones. A new calculus for the treatment of optical systems VIII. Electromagnetic theory. J. Opt. Soc. Am., 46, 126-131(1956).
[27] E. Collett. Polarized Light: Fundamentals and Applications(1990).
[28] H. Mueller. The foundation of optics. J. Opt. Soc. Am., 38, 661(1948).
[29] N. Ortega-Quijano, J. L. Arce-Diego. Mueller matrix differential decomposition. Opt. Lett., 36, 1942-1944(2011).
[30] N. Ortega-Quijano, J. L. Arce-Diego. Depolarizing differential Mueller matrices. Opt. Lett., 36, 2429-2431(2011).
[31] R. Ossikovski. Differential matrix formalism for depolarizing anisotropic media. Opt. Lett., 36, 2330-2332(2011).
[32] R. Ossikovski. Retrieval of a nondepolarizing estimate from an experimental Mueller matrix through virtual experiment. Opt. Lett., 37, 578-580(2012).
[33] R. Ossikovski. Differential and product Mueller matrix decompositions a formal comparison. Opt. Lett., 37, 220-222(2012).
[34] N. Ortega-Quijano, B. Haj-Ibrahim, E. García-Caurel, J. L. Arce-Diego, R. Ossikovski. Experimental validation of Mueller matrix differential decomposition. Opt. Exp., 20, 1151-1163(2012).
[35] S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, N. Ghosh. Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media. J. Biomed. Opt., 17, 105006-105312(2012).
[36] D. H. Goldstein. Polarized Light(2017).
[37] S. Y. Lu, R. A. Chipman. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am., 13, 1106-1113(1996).
[38] N. Ghosh, M. F. G. Wood, I. A. Vitkin. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering optical activity and linear birefringence. J. Biomed. Opt., 13, 044036(2008).
[39] N. Ghosh, M. F. G. Wood, I. A. Vitkin. Polarimetry in turbid birefringent optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry. J. Appl. Phys., 105, 102023(2009).
[40] H. He, J. Chang, C. He, H. Ma. Transformation of full 4×4 Mueller matrices: A quantitative technique for biomedical diagnosis. Proc. SPIE, 9707, 58-65(2016).
[41] H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, H. Ma. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media. Photon. Lasers. Med., 2, 129-137(2013).
[42] N. Ghosh, M. Wood, A. Vitkin. Polarized light assessment of complex turbid media such as biological tissues using Mueller matrix decomposition. Handb. Photon. Biomed. Sci., 9, 253-282(2010).
[43] N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. K. Li, I. A. Vitkin. Mueller matrix decomposition for polarized light assessment of biological tissues. J. Biophoton., 2, 145-156(2009).
[44] N. Ghosh, M. F. G. Wood, I. A. Vitkin. Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues. Opt. Commun., 283, 1200-1208(2010).
[45] M. Anastasiadou, S. B. Hatit, R. Ossikovski, S. Guyot, A. D. Martino. Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices. J. Eur. Opt. Soc.-Rapid Publ., 2, 07018(2007).
[46] R. Ossikovski, A. De Martino, S. Guyot. Forward and reverse product decompositions of depolarizing Mueller matrices. Opt. Lett., 32, 689-691(2007).
[47] R. Ossikovski. Analysis of depolarizing Mueller matrices through a symmetric decomposition. J. Opt. Soc. Am. A., 26, 1109-1118(2009).
[48] N. Kumar, J. K. Nayak, A. Pradhan, N. Ghosh. Mueller matrix based characterization of Cervical tissue sections: A quantitative comparison of polar and differential decomposition methods(2023).
[49] P. Li, H. R. Lee, S. Chandel, C. Lotz, F. K. Groeber-Becker, S. Dembski, R. Ossikovski, H. Ma, T. Novikova. Analysis of tissue microstructure with Mueller microscopy: Logarithmic decomposition and Monte Carlo modeling. J. Biomed. Opt., 25, 015002(2020).
[50] S. R. Cloude. Conditions for the physical realizability of matrix operations in polarimetry. Proc. SPIE, 1166, 177-188(1990).
[51] S. R. Cloude. Group theory and polarisation algebra. Optik, 75, 26-36(1986).
[52] M. Gonzalez, R. Ossikovski, T. Novikova, J. C. Ramella-Roman. Introduction of a 3×4 Mueller matrix decomposition method. J. Phys. D-Appl. Phys., 54, 4240052021(2021).
[53] J. F. De Boer, C. K. Hitzenberger, Y. Yasuno. Polarization sensitive optical coherence tomography — a review. Biomed. Opt. Exp., 8, 1838-1873(2017).
[54] T. Novikova, J. C. Ramella-Roman. Is a complete Mueller matrix necessary in biomedical imaging?. Opt. Lett., 47, 5549-5552(2022).
[55] Y. Huang, A. Hou, J. Wang, Y. Yao, W. Miao, X. Tian, J. Yu, C. Li, H. Ma, Y. Fan. Identification of serous ovarian tumors based on polarization imaging and correlation analysis with clinicopathological features. J. Innov. Opt. Health Sci., 16, 2241002(2023).
[56] R. R. Anderson. Polarized light examination and photography of the skin arch. Dermatol., 127, 1000-1005(1991).
[57] S. L. Jacques, J. R. Roman, K. Lee. Imaging superficial tissues with polarized light. Lasers Surg. Med., 26, 119-129(2000).
[58] J. C. Ramella-Roman, I. Saytashev, M. Piccini. A review of polarization-based imaging technologies for clinical and preclinical applications. J. Opt., 22, 123001(2020).
[59] O. Genzel-Boroviczeny, J. Strotgen, A. G. Harris, K. Messmer, F. Christ. Orthogonal polarization spectral imaging (OPS): A novel method to measure the microcirculation in term and preterm infants transcutaneously. Pediatr. Res., 51, 386-391(2002).
[60] S. Langer, F. Born, R. Hatz, P. Biberthaler, K. Messmer. Orthogonal polarization spectral imaging versus intravital fluorescent microscopy for microvascular studies in wounds. Ann. Plast. Surg., 48, 646-653(2002).
[61] S. Langer, A. G. Harris, P. Biberthaler, E. Dobschuetz, K. Messmer. Orthogonal polarization spectral imaging as a tool for the assessment of hepatic microcirculation: A validation study. Transplantation, 71, 1249-1256(2001).
[62] E. Dobschuetz, P. Biberthaler, T. Mussack, S. Langer, K. Messmer, T. Hoffmann. Noninvasive in vivo assessment of the pancreatic microcirculation: Orthogonal polarization spectral imaging. Pancreas, 26, 139-143(2003).
[63] P. R. Bargo, N. Kollias. Measurement of skin texture as a function of age through polarization imaging. J. Invest. Dermatol., 126, 45(2006).
[64] P. R. Bargo, N. Kollias. Measurement of skin texture through polarization imaging. Br. J. Dermatol., 162, 724-731(2010).
[65] E. Collett. Measurement of the four Stokes polarization parameters with a single circular polarizer. Opt. Commun., 52, 7-80(1984).
[66] J. Song, N. Zeng, W. Guo, J. Guo, H. Ma. Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomed. Opt. Exp., 12, 4821-4836(2021).
[67] B. Boulbry, J. C. Ramella-Roman, T. A. Germer. Improved method for calibrating a Stokes polarimeter.pdf. Appl. Opt., 46, 8533-8541(2007).
[68] B. Boulbry, J. C. Ramella-Roman, T. A. Germer. Truncated singular value decomposition method for calibrating a Stokes polarimeter, 6682, 196-205(2007).
[69] H. Yang, J. Song, N. Zeng, H. Ma. Local optimized Stokes polarimetry for specific polarization states. Opt. Lett., 48, 3019-3022(2023).
[70] L. Gendre, A. Foulonneau, L. Bigué. Full Stokes polarimetric imaging using a single ferroelectric liquid crystal device. Opt. Eng., 50, 081209(2011).
[71] B. Laude-Boulesteix, A. D. Martino, B. Drévillon, L. Schwartz. Mueller polarimetric imaging system with liquid crystals. Appl. Opt., 43, 2824-2832(2004).
[72] S. Alali, A. Gribble, I. A. Vitkin. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts. Opt. Lett., 41, 1038-1041(2016).
[73] E. A. Sornsin, R. A. Chipman. Mueller matrix polarimetry of electro-optic PLZT spatial light modulators. Proc. SPIE, 2873, 196-201(1996).
[74] C. He, H. He, J. Chang, B. Chen, H. Ma, M. J. Booth. Polarisation optics for biomedical and clinical applications: A review. Light-Sci. Appl., 10, 194(2021).
[75] R. M. A. Azzam. Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light. Opt. Acta.: Int. J. Opt., 29, 685-689(1982).
[76] D. Lara, C. Dainty. Axially resolved complete Mueller matrix confocal microscopy. Appl. Opt., 45, 1917-1930(2006).
[77] Z. Xiong, H. Wang, J. Li, R. Liao, H. Mai, C. Guan, Z. Guo, S. Yang, Y. Chen, B. Liu, T. Liu, H. Li, W. Ding, Y. Zeng, H. Ma. Probing individual particles in aquatic suspensions by simultaneously measuring polarized light scattering and fluorescence. Biosensors, 11, 416(2021).
[78] J. L. Pezzaniti, D. B. Chenault. A division of aperture MWIR imaging polarimeter. Proc. SPIE, 5888, 239-250(2005).
[79] D. Li, F. Chen, N. Zeng, Z. Qiu, H. He, Y. He, H. Ma. Study on polarization scattering applied in aerosol recognition in the air. Opt. Exp., 27, A581-A595(2019).
[80] J. Chang, N. Zeng, H. He, Y. He, H. Ma. Single-shot spatially modulated Stokes polarimeter based on a GRIN lens. Opt. Lett., 39, 2656-2659(2014).
[81] G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones. Micropolarizer array for infrared imaging polarimetry. J. Opt. Soc. Am. A., 16, 1168-1174(1999).
[82] S. K. Gao, V. Gruev. Bilinear and bicubic interpolation methods for division of focal plane polarimeters. Opt. Exp., 19, 26161-26173(2011).
[83] Y. Liu, T. York, W. J. Akers, G. P. Sudlow, V. Gruev, S. Achilefu. Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor. J. Biomed. Opt., 17, 116001(2012).
[84] H. Zhou, J. Li, R. Liao, Y. Chen, T. Liu, Y. Wang, X. Zhang, H. Ma. Profile probing of suspended particles in water by Stokes vector polarimetry. Opt. Exp., 30, 14924-14937(2022).
[85] R. Perkins, V. Gruev. Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters. Opt. Exp., 18, 25815-25824(2010).
[86] D. Rebhan, M. Rosenberger, G. Notni. Principle investigations on polarization image sensors. Photon. Edu. Meas. Sci., 11144, 50-54(2019).
[87] O. Arteaga, M. Baldrís, J. Antó, A. Canillas, E. Pascual, E. Bertran. Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation. Appl. Opt., 53, 2236-2245(2014).
[88] Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, H. Ma. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope. Micron, 79, 8-15(2015).
[89] T. Huang, Q. Zhao, X. Wang, Y. Leng, R. Liao, H. Ma. Hybrid calibration method for Mueller matrix microscopy. Opt. Lasers Eng., 165, 107543(2023).
[90] Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, H. Ma. Mueller matrix microscope: A quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt., 21, 071112(2016).
[91] Q. Zhao, T. Huang, Z. Hu, T. Bu, S. Liu, R. Liao, H. Ma. Geometric optimization method for a polarization state generator of a Mueller matrix microscope. Opt. Lett., 46, 5631-5634(2021).
[92] T. Huang, R. Meng, J. Qi, Y. Liu, X. Wang, Y. Chen, R. Liao, H. Ma. Fast Mueller matrix microscope based on dual DoFP polarimeters. Opt. Lett., 46, 1676-1679(2021).
[93] T. Huang, R. Meng, H. Ma. Dual-DoFP polarimeters based collinear reflection Mueller matrix microscope for fast process monitoring. Proc. SPIE, 11900, 119004(2021).
[94] R. M. A. Azzam. Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett., 2, 148-150(1978).
[95] D. H. Goldstein, R. A. Chipman. Error analysis of a Mueller matrix polarimeter. J. Opt. Soc. Am. A., 7, 693-700(1990).
[96] D. H. Goldstein. Mueller matrix dual-rotating retarder polarimeter. Appl. Opt., 31, 6676-6683(1992).
[97] D. B. Chenuault, J. L. Pezzaniti, R. A. Chipman. Mueller matrix algorithms. Proc. SPIE, 1746, 231-246(1992).
[98] M. H. Smith. Optimization of the dual-rotating-retarder Mueller matrix polarimeter. Appl. Opt., 41, 2488-2493(2002).
[99] Z. Chen, Y. Yao, Y. Zhu, H. Ma. Removing the dichroism and retardance artifacts in a collinear backscattering Mueller matrix imaging system. Opt. Exp., 26, 28288-28301(2018).
[100] J. Soni, H. Purwar, H. Lakhotia, S. Chandel, C. Banerjee, U. Kumar, N. Ghosh. Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system. Opt. Exp., 21, 15475-15489(2013).
[101] C. Macias-Romero, P. Török. Eigenvalue calibration methods for polarimetry. J. Eur. Opt. Soc. Rapid Publ., 7, 12004(2012).
[102] J. Wolfe, R. A. Chipman. Reducing symmetric polarization aberrations in a lens by annealing. Opt. Exp., 12, 3443-3451(2004).
[103] T. C. Wood, D. S. Elson. Polarization response measurement and simulation of rigid endoscopes. Biomed. Opt. Exp., 1, 463-470(2010).
[104] Y. Shen, B. Chen, C. He, H. He, J. Guo, J. Wu, D. S. Elson, H. Ma. Polarization aberrations in high-numerical-aperture lens systems and their effects on vectorial-information sensing. Remote. Sens., 14, 1932(2022).
[105] H. Hu, R. Ossikovski, F. Goudail. Performance of maximum likelihood estimation of Mueller matrices taking into account physical realizability and Gaussian or Poisson noise statistics. Opt. Exp., 21, 5117-5129(2013).
[106] W. Guo, J. Song, N. Zeng, H. Ma. Mueller matrix imaging optimized by uniform illumination. Front. Phys., 10, 931958(2022).
[107] J. P. Angelo, T. A. Germer, M. Litorja. Structured illumination mueller matrix imaging. Biomed. Opt. Exp., 10, 2861-2868(2019).
[108] J. Song, W. Guo, N. Zeng, H. Ma. Polarization phase unwrapping by a dual-wavelength Mueller matrix imaging system. Opt. Lett., 48, 2058-2061(2023).
[109] T. Huang, Q. Zhao, H. MaSPIE. Calibration method for multiwavelength Mueller matrix microscope based on dual DoFP polarimeters. Proc, 11963, 1196306(2022).
[110] T. Huang, R. Meng, J. Song, T. Bu, Y. Zhu, M. Li, R. Liao, H. Ma. Dual division of focal plane polarimeters-based collinear reflection Mueller matrix fast imaging microscope. J. Biomed. Opt., 27, 086501(2022).
[111] X. Yang, Q. Zhao, T. Huang, Z. Hu, T. Bu, H. He, A. Hou, M. Li, Y. Xiao, H. Ma. Deep learning for denoising in a Mueller matrix microscope. Biomed. Opt. Exp., 13, 3535-3551(2022).
[112] G. G. Stokes. On the change of refrangibility of light. Philos. Trans. R. Soc. Lond., 142, 463-562(1852).
[113] J. P. Perrin. Polarization of light of fluorescence, average life of molecules in the excited state. Phys. Radium., 7, 390-401(1926).
[114] Y. Zhang, H. Tang, W. Chen, J. Zhang. Nanomaterials used in fluorescence polarization based biosensors. Int. J. Mol. Sci., 23, 8625(2022).
[115] D. M. Jameson, J. A. Ross. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev., 110, 2685-2708(2010).
[116] N. Ghosh, I. Alex Vitkin. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt., 16, 110801(2011).
[117] S. Saha, J. Soni, S. Chandel, N. Ghosh, U. Kumar. Probing intrinsic anisotropies of fluorescence: Mueller matrix approach. J. Biomed. Opt., 20, 085005(2015).
[118] K. Maji, S. Saha, R. Dey, N. Ghosh, D. Haldar. Mueller matrix fluorescence spectroscopy for probing self-assembled peptide-based hybrid supramolecular structure and orientation. J. Phys. Chem. C, 121, 19519-19529(2017).
[119] O. Arteaga, S. Nichols, B. Kahr. Mueller matrices in fluorescence scattering. Opt. Lett., 37, 2835-2837(2012).
[120] J. Jagtap, S. Chandel, N. Das, J. Soni, S. Chatterjee, A. Pradhan, N. Ghosh. Quantitative Mueller matrix fluorescence spectroscopy for precancer detection. Opt. Lett., 39, 243-246(2014).
[121] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto. Optical coherence tomography. Science, 254, 1178-1181(1991).
[122] M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B, 9, 903-908(1992).
[123] Z. Ding, C. Liang, Y. Chen. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography. Front. Optoelectron., 8, 128-140(2015).
[124] J. Chue-Sang, Y. Bai, S. Stoff, M. Gonzalez, N. Holness, J. Gomes, R. Jung, A. Gandjbakhche, V. V. Chernomordik, J. C. Ramella-Roman. Use of Mueller matrix polarimetry and optical coherence tomography in the characterization of cervical collagen anisotropy. J. Biomed. Opt., 22, 086010(2017).
[125] J. Chue-Sang, Y. Bai, S. Stoff, D. Straton, S. D. Ramaswamy, J. C. Ramella-Roman. Use of combined polarization-sensitive optical coherence tomography and Mueller matrix imaging for the polarimetric characterization of excised biological tissue. J. Biomed. Opt., 21, 071109(2016).
[126] S. Jiao, L. V. Wang. Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization sensitive optical coherence tomography. Opt. Lett., 27, 101-103(2001).
[127] D. N. Ignatenko, A. V. Shkirin, Y. P. Lobachevsky, S. V. Gudkov. Applications of Mueller matrix polarimetry to biological and agricultural diagnostics: A review. Appl. Sci., 12, 5258(2022).
[128] M. P. Raele, M. M. Amaral, N. D. Vieira, A. Zanardi de Freitas. Polarization sensitive and Mueller matrix OCT measurements and data analysis. Proc. SPIE, 7889, 453-461(2011).
[129] S. Jiao, W. Yu, G. Stoica, L. V. Wang. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Appl. Opt., 42, 5191-5197(2003).
[130] K. Li, B. Liu, Z. Wang, Y. Li, H. Li, S. Wu, Z. Li. Quantitative characterization of zebrafish development based on multiple classifications using Mueller matrix OCT. Biomed. Opt. Exp., 14, 2889-2904(2023).
[131] E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, C. K. Hitzenberger. Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci., 48, 3551-3558(2007).
[132] S. Fukuda, M. Yamanari, Y. Lim, S. Hoshi, S. Beheregaray, T. Oshika, Y. Yasuno. Keratoconus diagnosis using anterior segment polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci., 54, 1384-1391(2013).
[133] D. Kasaragod, S. Fukuda, Y. Ueno, S. Hoshi, T. Oshika, Y. Yasuno. Objective evaluation of functionality of filtering bleb based on polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci., 57, 2305-2310(2016).
[134] S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger. Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT. Invest. Ophthalmol. Vis. Sci., 54, 72-84(2013).
[135] S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger. Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomed. Opt. Exp., 3, 2720-2732(2012).
[136] S. Sugiyama, Y. J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, Y. Yasuno. Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography. Biomed. Opt. Exp., 6, 4951-4974(2015).
[137] M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer. Advances in optical coherence tomography imaging for dermatology. J. Invest. Dermatol., 123, 458-463(2004).
[138] K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, J. F. de Boer. Polarization-sensitive optical frequency domain imaging based on unpolarized light. Opt. Exp., 19, 552-561(2011).
[139] J. F. de Boer, T. E. Milner. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt., 7, 359-371(2002).
[140] M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth. Polarization sensitive optical coherence tomography in the human eye. Prog. Retin. Eye Res., 30, 431-451(2011).
[141] Y. Fu, Z. Huang, H. He, H. Ma, J. Wu. Flexible 3×3 Mueller matrix endoscope prototype for cancer detection. IEEE Trans. Instrum. Meas., 67, 1700-1712(2018).
[142] J. Qi, D. S. Elson. A high definition Mueller polarimetric endoscope for tissue characterisation. Sci. Rep., 6, 25953(2016).
[143] J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, D. Pagnoux. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method. J. Biomed. Opt., 21, 071106(2016).
[144] N. T. Clancy, S. Arya, J. Qi, D. Stoyanov, G. B. Hanna, D. S. Elson. Polarised stereo endoscope and narrowband detection for minimal access surgery. Biomed. Opt. Exp., 5, 4108-4117(2014).
[145] A. Pigula, N. T. Clancy, S. Arya, G. B. Hanna, D. S. Elson. Video-rate dual polarization multispectral endoscopic imaging. Biomed. Appl. Light Scattering IX. SPIE, 9333, 34-37(2015).
[146] W. Van de Merwe, Z. Z. Li, B. V. Bronk, J. Czégé. Polarized light scattering for rapid observation of bacterial size changes. Biophys. J., 73, 500-506(1997).
[147] M. Chami, A. Thirouard, T. P. Harmel. POLVSM (Polarized Volume Scattering Meter) instrument: An innovative device to measure the directional and polarized scattering properties of hydrosols. Opt. Exp., 22, 26403-26428(2014).
[148] Y. Wang, R. Liao, J. Dai, Z. Liu, Z. Xiong, T. Zhang, H. Chen, H. Ma. Differentiation of suspended particles by polarized light scattering at 120. Opt. Exp., 26, 22419-22431(2018).
[149] D. Li, N. Zeng, D. Zhan, Y. Chen, M. Zeng, H. Ma. Differentiation of soot particulates in air using polarized light scattering method. Appl. Opt., 56, 4123-4129(2017).
[150] V. V. Tuchin, L. Wang, D. Zimnyakov. Optical Polarization in Biomedical Applications(2006).
[151] N. G. Kh lebtsov, I. L. Maksimova, I. V. Meglinski, L. Wang, V. V. Tuchin. Introduction to light scattering by biological objects. Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction, 1, 3-159(2016).
[152] V. V. Tuchin. Polarized light interaction with tissues. J. Biomed. Opt., 21, 071114(2016).
[153] M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, H. Ma. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Exp., 5, 4223-4234(2014).
[154] H. Zhai, Y. Sun, H. He, B. Chen, C. He, Y. Wang, H. Ma. Distinguishing tissue structures via polarization staining images based on different combinations of Mueller matrix polar decomposition parameters. Opt. Lasers Eng., 152, 106955(2022).
[155] M. Borovkova, L. Trifonyuk, V. Ushenko, O. Dubolazov, O. Vanchulyak, G. Bodnar, Y. Ushenko, O. Olar, O. Ushenko, M. Sakhnovskiy, A. Bykov, I. Meglinski. Mueller-matrix-based polarization imaging and quantitative assessment of optically anisotropic polycrystalline networks. PLoS One, 14, e0214494(2019).
[156] J. Song, N. Zeng, H. Ma, V. V. Tuchin. A rapid Stokes imaging method for characterizing the optical properties of tissue during immersion optical clearing. IEEE J. Sel. Top. Quantum Electron., 29, 1-9(2022).
[157] Y. Yao, J. Wan, F. Zhang, Y. Dong, L. Chen, H. Ma. Correlation of image textures of a polarization feature parameter and the microstructures of liver fibrosis tissues. J. Innov. Opt. Health. Sci., 16, 2241004(2023).
[158] Y. Chen, Y. Dong, L. Si, W. Yang, S. Du, X. Tian, C. Li, Q. Liao, H. Ma. Dual polarization modality fusion network for assisting pathological diagnosis. IEEE Trans. Med. Imaging., 42, 304-316(2022).
[159] J. Qi, T. Tatla, E. Nissanka-Jayasuriya, A. Y. Yuan, D. Stoyanov, D. S. Elson. Surgical polarimetric endoscopy for the detection of laryngeal cancer. Nat. Biomed. Eng., 7, 971-985(2023).
[160] S. Anwar, S. Firdous. Optical diagnosis of dengue virus infected human blood using Mueller matrix polarimetry. Opt. Spectrosc., 121, 322-325(2016).
[161] H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnelll, J. F. Ojeda, K. Jacobs, X. Hu. Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm. J. Biomed. Opt., 12, 034032(2007).
[162] Ø. Svensen, J. J. Stamnes, M. Kildemo, L. M. S. Aas, S. R. Erga, Ø. Frette. Mueller matrix measurements of algae with different shape and size distributions. Appl. Opt., 50, 5149-5157(2011).
[163] O. Rodríguez-Núñez, P. Schucht, E. Hewer, T. Novikova, A. Pierangelo. Polarimetric visualization of healthy brain fiber tracts under adverse conditions: Ex vivo studies. Biomed. Opt. Exp., 12, 6674-6685(2021).
[164] L. Duan, S. Makita, M. Yamanari, Y. Lim, Y. Yasuno. Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography. Opt. Exp., 19, 16330-16345(2011).
[165] S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, T. Oshika. Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography. Investigative. Ophthalmol. Vis. Sci., 56, 3196-3201(2015).
[166] A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. R. Antonelli, A. D. Martino. Polarimetric imaging of uterine cervix: A case study. Opt. Exp., 21, 14120-14130(2013).
[167] T. Liu, M. Lu, B. Chen, Q. Zhong, J. Li, H. He, H. Mao, H. Ma. Distinguishing structural features between Crohn’s disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. J. Biophoton., 12, e201900151(2019).
[168] C. He, J. Chang, Q. Hu, J. Wang, J. Antonello, H. He, S. Liu, J. Lin, B. Dai, D. S. Elson, P. Xi, H. Ma, M. J. Booth. Complex vectorial optics through gradient index lens cascades. Nat. Commun., 10, 4264(2019).
[169] E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, H. Ma. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt., 19, 076013(2014).
[170] I. Ahmad, M. Ahmad, K. Khan, S. Ashraf, S. Ahmad, M. Ikram. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt., 20, 056012(2015).
[171] A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. D. Martino, P. Validire. Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J. Biomed. Opt., 18, 046014(2013).
[172] Y. Dong, J. Wan, L. Si, Y. Meng, Y. Dong, S. Liu, H. He, H. Ma. Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues. IEEE Trans. Biomed. Eng., 68, 881-892(2020).
[173] Y. Shi, Y. Sun, R. Huang, Y. Zhou, H. Zhai, Z. Fan, Z. Ou, P. Huang, H. He, C. He, Y. Wang, H. Ma. A quantitative technique to analyze and evaluate microstructures of skin hair follicles based on Mueller matrix polarimetry. Front. Phys., 2022, 847656(2022).
[174] I. Ahmad, A. Khaliq, M. Iqbal, S. Khan. Mueller matrix polarimetry for characterization of skin tissue samples: A review. Photodiagnosis Photodyn. Ther., 30, 101708(2020).
[175] H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, H. Ma. Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging. J. Biophoton., 10, 664-673(2017).
[176] C. Rodríguez, A. V. Eeckhout, L. Ferrer, E. Garcia-Caurel, E. González-Arnay, J. Campos, A. Lizana. Polarimetric data-based model for tissue recognition. Biomed. Opt. Exp., 12, 4852-4872(2021).
[177] J. J. Gil, I. S. José, M. Canabal-Carbia, I. Estévez, E. González-Arnay, J. Luque, T. Garnatje, J. Campos, A. Lizana. Polarimetric images of biological tissues based on the arrow decomposition of Mueller matrices. Photonics, 10, 669(2023).
[178] M. Jang, H. Ko, J. H. Hong, W. K. Lee, J. Lee, W. Choi. Deep tissue space-gated microscopy via acousto-optic interaction. Nat. Commun., 11, 710(2020).
[179] L. E. Iannucci, M. B. Riak, E. Meitz, M. R. Bersi, V. Gruev, S. P. Lake. Effect of matrix properties on transmission and reflectance mode division-of-focal-plane Stokes polarimetry. J. Biomed. Opt., 28, 102902(2023).
[180] J. Chue-Sang, M. Gonzalez, A. Pierre, M. Laughrey, I. Saytashev, T. Novikova, J. C. Ramella-Roman. Optical phantoms for biomedical polarimetry: A review. J. Biomed. Opt., 24, 030901(2019).
[181] V. V. Tuchin. Optical clearing of tissues and blood using the immersion method. J. Phys. D-Appl. Phys., 38, 2497-2518(2005).
[182] H. F. Silva, I. S. Martins, A. A. Bogdanov, V. V. Tuchin, L. M. Oliveira. Characterization of optical clearing mechanisms in muscle during treatment with glycerol and gadobutrol solutions. J. Biophoton., 16, e202200205(2022).
[183] Q. Lin, E. N. Lazareva, V. I. Kochubey, Y. Duan, V. V. Tuchin. Kinetics of optical clearing of human skin studied in vivousing portable Raman spectroscopy. Laser. Phys. Lett., 17, 105601(2020).
[184] C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, A. J. Welch. Dehydration mechanism of optical clearing in tissue. J. Biomed. Opt., 11, 041117(2006).
[185] Y. S. Qi, T. T. Yu, J. Y. Xu, P. Wan, Y. L. Ma, J. T. Zhu, Y. S. Li, H. Gong, Q. M. Luo, D. Zhu. FDISCO: Advanced solvent-based clearing method for imaging whole organs. Sci. Adv., 5, eaau8355(2019).
[186] A. N. Bashkatov, A. N. Korolevich, V. V. Tuchin, Y. P. Sinichkin, E. A. Genina, M. M. Stolnitz, N. S. Dubina, S. I. Vecherinski, M. S. Belsley. In vivo investigation of human skin optical clearing and blood microcirculation under the action of glucose solution. Asian. J. Phys., 15, 1-14(2006).
[187] Q. Xia, D. Li, T. Yu, J. Zhu, D. Zhu. In vivo skin optical clearing for improving imaging and light-induced therapy: A review. J. Biomed. Opt., 28, 060901(2023).
[188] E. A. Genina, A. N. Bashkatov, A. A. Korobko, E. A. Zubkova, V. V. Tuchin, I. Yaroslavsky, G. B. Altshuler. Optical clearing of human skin: Comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt., 13, 021102(2008).
[189] V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, A. A. Mishin. Light propagation in tissues with controlled optical properties. J. Biomed. Opt., 2, 401-417(1997).
[190] P. Matryba, L. Kaczmarek, J. Goła̧b. Advances in ex situ tissue optical clearing. Laser. Photon. Rev., 13, 1800292(2019).
[191] D. Zhu, J. Wang, Z. Zhi, X. Wen, Q. Luo. Imaging dermal blood flow through the intact rat skin with an optical clearing method. J. Biomed. Opt., 15, 026008(2010).
[192] Y. Zhou, J. Yao, L. V. Wang. Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth. Opt. Lett., 38, 2592-2595(2013).
[193] K V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, V. V. Tuchin. Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. IEEE J. Sel. Top. Quantum Electron., 18, 1244-1259(2012).
[194] C. Macdonald, I. Meglinski. Backscattering of circular polarized light from a disperse random medium influenced by optical clearing. Laser. Phys. Lett., 8, 324-328(2011).
[195] O. Nadiarnykh, P. J. Campagnola. Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing. Opt. Exp., 17, 5794-5806(2009).
[196] Q. Xie, N. Zeng, Y. Huang, V. V. Tuchin, H. Ma. Study on the tissue clearing process using different agents by Mueller matrix microscope. Biomed. Opt. Exp., 10, 3269-3280(2019).
[197] D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, H. Ma. Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models. J. Biomed. Opt., 21, 081209(2016).
[198] D. Chen, N. Zeng, Q. Xie, H. He, V. V. Tuchin, H. Ma. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing. Biomed. Opt. Exp., 8, 3559-3570(2017).
[199] Y. Yu, Y. Zheng, C. Guan, M. Yi, Y. Chen, Y. Zeng, H. Xiong, X. Wang, J. Zhong, W. Ding, M. Wang, X. Wei. Detection of cells by flow cytometry: Counting, imaging, and cell classification. J. Innov. Opt. Health. Sci., 16, 2330005(2023).
[200] X. Zhu, Y. Suo, Y. Fu, F. Zhang, N. Ding, K. Pang, C. Xie, X. Weng, M. Tian, H. He, X. Wei. In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells. Light-Sci. Appl., 10, 110(2021).
[201] S. Amiri, M. Abedin, S. Badieyan, M. Vaezjalali, O. Akhavan, P. Sasanpour. Viral infected cells reveal distinct polarization behavior: A polarimetric microscopy analysis on HSV infected Vero and HeLa cells. J. Quant. Spectrosc. Radiat. Transf., 262, 107484(2021).
[202] Z. Yu, Y. Li, L. Deng, B. Luo, P. Wu, D. Geng. A high performance cell phone based polarized microscope for malaria diagnosis. J. Biophoton., 2023, e202200290(2023).
[203] L. Xia, Y. Yao, Y. Dong, M. Wang, H. Ma, L. Ma. Mueller polarimetric microscopic images analysis based classification of breast cancer cells. Opt. Commun., 475, 126194(2020).
[204] L. Si, T. Huang, X. Wang, Y. Yao, Y. Dong, R. Liao, H. Ma. Deep learning Mueller matrix feature retrieval from a snapshot Stokes image. Opt. Exp., 30, 8676-8689(2022).
[205] J. Li, H. Wang, R. Liao, Y. Wang, Z. Liu, Z. Zhuo, Z. Guo, H. Ma. Statistical Mueller matrix driven discrimination of suspended particles. Opt. Lett., 46, 3645-3648(2021).
[206] D. Ma, Z. Lu, L. Xia, Q. Liao, W. Yang, H. Ma, R. Liao, L. Ma, Z. Liu. MuellerNet: A hybrid 3D–2D CNN for cell classification with Mueller matrix images. Appl. Opt., 60, 6682-6694(2021).
[207] L. Zhao, L. Tang, M. S. Greene, Y. Sa, W. Wang, J. Jin, H. Hong, J. Q. Lu, X. Hu. Deep learning of morphologic correlations to accurately classify CD4+ and CD8+ T cells by diffraction imaging flow cytometry. Anal. Chem., 94, 1567-1574(2022).
[208] Q. Xu, N. Zeng, W. Guo, J. Guo, Y. He, H. Ma. Multi-angle polarization index system for pollen type bioaerosol recognition. Front. Physics., 10, 174(2022).
[209] J. Li, R. Liao, Y. Tao, Z. Zhuo, Z. Liu, H. Deng, H. Ma. Probing the cyanobacterial Microcystis gas vesicles after static pressure treatment: A potential in situ rapid method. Sensors, 20, 4170(2020).
[210] N. Zurgil, Y. Shafran, D. Fixler, M. Deutsch. Analysis of early apoptotic events in individual cells by fluorescence intensity and polarization measurements. Biochem. Biophys. Res. Commun., 290, 1573-1582(2002).
[211] J. Yang, J. Li, Z. Xiong, W. Cui, R. Bi, R. Liao, H. Ma. Real-time monitoring of chlorination treatment in Microcystis cells by simultaneously measuring the polarized light scattering and fluorescence. Environ. Technol. Innov., 32, 103433(2023).
[212] J. Jin, J. Q. Lu, Y. Wen, P. Tian, X. H. Hu. Deep learning of diffraction image patterns for accurate classification of five cell types. J. Biophoton., 13, e201900242(2020).
[213] W. Wang, L. Min, P. Tian, C. Wu, J. Liu, X. H. Hu. Analysis of polarized diffraction images of human red blood cells: A numerical study. Biomed. Opt. Exp., 13, 1161-1172(2022).
[214] O. Rodríguez-Núñez, T. Novikova. Polarimetric techniques for the structural studies and diagnosis of brain. Adv. Opt. Technol., 11, 157-171(2022).
[215] J. Bonaventura, K. Morara, R. Carlson, C. Comrie, A. Twer, E. Hutchinson, T. W. Sawyer. Evaluating backscattering polarized light imaging microstructural mapping capabilities through neural tissue and analogous phantom imaging. J. Biomed. Opt., 29, 052914(2023).
[216] L. Felger, O. Rodríguez-Núñez, R. Gros, T. Maragkou, R. McKinley, S. Moriconi, M. Murek, I. Zubak, T. Novikova, A. Pierangelo, P. Schucht. Robustness of the wide-field imaging Mueller polarimetry for brain tissue differentiation and white matter fiber tract identification in a surgery-like environment: An ex vivo study. Biomed. Opt. Exp., 14, 2400-2415(2023).
[217] R. Gros, O. Rodríguez-Núñez, L. Felger, S. Moriconi, R. McKinley, A. Pierangelo, T. Novikova, E. Vassella, P. Schucht, E. Hewer, T. Maragkou. Effects of formalin fixation on polarimetric properties of brain tissue: Fresh or fixed?. Neurophotonics, 10, 025009(2023).
[218] D. Ivanov, L. Si, L. Felger, T. Maragkou, P. Schucht, M. Schanne-Klein, H. Ma, R. Ossikovski, T. Novikova. Impact of corpus callosum fiber tract crossing on polarimetric images of human brain histological sections: Ex vivo studies in transmission configuration. J. Biomed. Opt., 28, 102908(2023).
[219] P. Schucht, H. R. Lee, H. M. Mezouar, E. Hewer, A. Raabe, M. Murek, I. Zubak, J. Goldberg, E. Kovari, A. Pierangelo, T. Novikova. Visualization of white matter fiber tracts of brain tissue sections with wide-field imaging Mueller polarimetry. IEEE. Trans. Med. Imaging., 39, 4376-4382(2020).
[220] M. Borovkova, A. Bykov, A. Popov, A. Pierangelo, T. Novikova, J. Pahnke, I. Meglinski. Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Exp., 11, 4509-4519(2020).
[221] H. Axer, M. Axer, T. Krings, D. G. Keyserlingk. axer-Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light. J. Neurosci. Methods., 105, 121-131(2001).
[222] H. Axer, D. G. Keyserlingk. axer-Mapping of fiber orientation in human internal capsule by means of polarized light and confocal scanning laser microscopy. J. Neurosci. Methods., 94, 165-175(2000).
[223] M. Axer, K. Amunts, D. Grässel, C. Palm, J. Dammers, H. Axer, U. Pietrzyk, K. Zilles. A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain. NeuroImage, 54, 1091-1101(2011).
[224] M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, M. Axer. A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue. J. R. Soc. Interface., 12, 20150734(2015).
[225] A. Jain, L. Ulrich, M. Jaeger, P. Schucht, M. Frenz, H. G. Akarcay. Backscattering polarimetric imaging of the human brain to determine the orientation and degree of alignment of nerve fiber bundles. Biomed. Opt. Exp., 12, 4452-4466(2021).
[226] H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, H. Iseki. Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography. J. Neurosci. Meth., 174, 82-90(2008).
[227] H. Wang, J. Zhu, T. Akkin. Serial optical coherence scanner for large-scale brain imaging at microscopic resolution. NeuroImage, 84, 1007-1017(2014).
[228] H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, T. Akkin. Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography. NeuroImage, 58, 984-992(2011).
[229] L. Vermunt, S. A. M. Sikkes, A. V. D. Hout, R. Handels, I. Bos, W. M. V. D. Flier, S. Kern, P. Ousset, P. Maruff, I. Skoog, F. R. J. Verhey, Y. Freund-Levi, M. Tsolaki, Å. K. Wallin, M. O. Rikkert, H. Soininen, L. Spiru, H. Zetterberg, K. Blennow, P. Scheltens, G. Muniz-Terrera, P. J. Visser. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement.-Diagn. Assess. Dis. Monit., 15, 888-898(2019).
[230] J. A. Hardy, G. A. Higgins. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184-185(1992).
[231] M. Borovkova, O. Sieryi, I. Lopushenko, N. Kartashkina, J. Pahnke, A. Bykov, I. Meglinski. Screening of Alzheimer’s disease with multiwavelength Stokes polarimetry in a mouse model. IEEE Trans. Med. Imaging, 41, 977-982(2021).
[232] B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, J. G. Fujimoto. Swept source Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Opt. Exp., 20, 10229-10241(2012).
[233] S. Makita, M. Yamanari, Y. Yasuno. Generalized Jones matrix optical coherence tomography performance and local birefringence imaging. Opt. Exp., 18, 854-876(2010).
[234] H. Afsharan, D. Silva, C. Joo, B. Cense. Non-invasive retinal blood vessel wall measurements with polarization-sensitive optical coherence tomography for diabetes assessment: A quantitative study. Biomolecules, 13, 1230(2023).
[235] D. J. Harper, Y. Kim, A. Gómez-Ramírez, B. J. Vakoc. Needle guidance with Doppler-tracked polarization-sensitive optical coherence tomography. J. Biomed. Opt., 28, 102910(2023).
[236] M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, C. K. Hitzenberger. Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT. Biomed. Opt. Exp., 6, 1030-1054(2015).
[237] M. Yamanari, S. Nagase, S. Fukuda, K. Ishii, R. Tanaka, T. Yasui, T. Oshika, M. Miura, Y. Yasuno. Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo. Biomed. Opt. Exp., 5, 1391-1402(2014).
[238] Y. J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, Y. Yasuno. Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography. Invest. Ophthalmol. Vis. Sci., 55, 5016-5031(2014).
[239] L. P. Hariri, M. Villiger, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. E. Bouma, M. J. Suter. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. Am. J. Respir. Crit. Care Med., 187, 125-129(2013).
[240] M. C. Pierce, M. Shishkov, B. H. Park, N. A. Nassif, B. E. Bouma, G. J. Tearney, J. F. de Boer. Effects of sample arm motion in endoscopic polarizationsensitive optical coherence tomography. Opt. Exp., 13, 5739-5749(2005).
[241] K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, J. F. de Boer. In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter. Opt. Exp., 18, 14644-14653(2010).
[242] T. Kramer, P. C. Wijsman, K. A. Kalverda, P. I. Bonta, J. T. Annema. Advances in bronchoscopic optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Curr. Opin. Pulm. Med., 29, 11-20(2023).
[243] N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, S. Nebelung. Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration. J. Biomed. Opt., 21, 076013(2016).
[244] M. Goodwin, B. Bräuer, S. Lewis, A. Thambyah, F. Vanholsbeeck. Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation. Sci. Rep., 8, 8568(2018).
[245] M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, G. Yao. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography. J. Biomed. Opt., 22, 121708(2017).
[246] P. Chen, H. Lee, Y. Chen, Y. Yeh, K. Chang, M. Hou, W. Kuo. Detection of oral dysplastic and early cancerous lesions by polarization-sensitive optical coherence tomography. Cancers, 12, 2376(2020).
[247] T. Hsiao, Y. Ho, S. Lee, C. Sun. Degree of polarization uniformity for dental calculus visualization. J. Biophoton., 15, e202200011(2022).
[248] K. Karnowski, Q. Li, A. Poudyal, M. Villiger, C. S. Farah, D. D. Sampson. Influence of tissue fixation on depth-resolved birefringence of oral cavity tissue samples. J. Biomed. Opt., 25, 096003(2020).
[249] H. S. Bhatti, S. Khan, M. Zahra, S. Mustafa, S. Ashraf, I. Ahmad. Characterization of radiofrequency ablated myocardium with optical coherence tomography. Photodiagn. Photodyn. Ther., 40, 103151(2022).
[250] W. Kuo, M. Hsiung, J. Shyu, N. Chou, P. Yang. Assessment of arterial characteristics in human atherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography. Opt. Exp., 16, 8117-8125(2008).
[251] Y. Li, S. Moon, Y. Jiang, S. Qiu, Z. Chen. Intravascular polarization-sensitive optical coherence tomography based on polarization mode delay. Sci. Rep., 12, 6831(2022).
[252] M. Pircher, E. Goetzinger, R. Leitgeb, C. K. Hitzenberger. Transversal phase resolved polarization sensitive optical coherence tomography. Phys. Med. Biol., 49, 1257-1263(2004).
[253] N. Hagen, K. Oka, E. L. Dereniak. Snapshot Mueller matrix spectropolarimeter: Erratum. Opt. Lett., 38, 1675-1675(2013).
[254] S. Manhas, J. Vizet, S. Deby, J. Vanel, P. Boito, M. Verdier, A. De Martino, D. Pagnoux. Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications. Opt. Exp., 23, 3047-3054(2015).
[255] S. Rivet, A. Bradu, A. Podoleanu. 70kHz full 4×4 Mueller polarimeter and simultaneous fiber calibration for endoscopic applications. Opt. Exp., 23, 23768-23786(2015).
Get Citation
Copy Citation Text
Caizhong Guan, Nan Zeng, Honghui He. Review of polarization-based technology for biomedical applications[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2430002
Category: Research Articles
Received: Nov. 17, 2023
Accepted: Jan. 22, 2024
Published Online: Apr. 7, 2025
The Author Email: Zeng Nan (zengnan@sz.tsinghua.edu.cn)