International Journal of Extreme Manufacturing, Volume. 7, Issue 3, 35502(2025)

Autonomous inverse encoding guides 4D nanoprinting for highly programmable shape morphing

Ren Shuaiqi, Zhang Zhiang, He Ruokun, Fan Jiahao, Wang Guangming, Wang Hesheng, Han Bing, Zhang Yong-Lai, and Ma Zhuo-Chen
References(47)

[1] [1] Hippler M, Blasco E, Qu J Y, Tanaka M, Barner-Kowollik C, Wegener M and Bastmeyer M 2019 Controlling the shape of 3D microstructures by temperature and lightNat. Commun.10232

[2] [2] Han B, Zhang Y L, Chen Q D and Sun H B 2018 Carbon-based photothermal actuatorsAdv. Funct. Mater.281802235

[3] [3] Xin C, Ren Z G, Zhang L R, Yang L, Wang D W, Hu Y L, Li J W, Chu J R, Zhang L and Wu D 2023 Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writingNat. Commun.144273

[4] [4] Deng C S, Liu Y C, Fan X H, Jiao B Z, Zhang Z X, Zhang M D, Chen F Y, Gao H, Deng L M and Xiong W 2023 Femtosecond laser 4D printing of light-driven intelligent micromachinesAdv. Funct. Mater.332211473

[5] [5] Kim Y, Yuk H, Zhao R K, Chester S A and Zhao X H 2018 Printing ferromagnetic domains for untethered fast-transforming soft materialsNature558274–9

[6] [6] Xia Net al2022 Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platformAdv. Mater.342109126

[7] [7] Hu Y Let al2020 Botanical-inspired 4D printing of hydrogel at the microscaleAdv. Funct. Mater.301907377

[8] [8] Ma Z C, Zhang Y L, Han B, Hu X Y, Li C H, Chen Q D and Sun H B 2020 Femtosecond laser programmed artificial musculoskeletal systemsNat. Commun.114536

[9] [9] Jin D D, Chen Q Y, Huang T Y, Huang J Y, Zhang L and Duan H L 2020 Four-dimensional direct laser writing of reconfigurable compound micromachinesMater. Today3219–25

[10] [10] Fan J H, Ren S Q, Han B, He R K, Zhang Z A, Han Q Q, Yang X S, Wang H S and Ma Z C 2024 Magnetic fiber robots with multiscale functional structures at the distal endAdv. Funct. Mater.342309424

[11] [11] Wang Q Let al2024 Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted deliverySci. Robot.9eadh1978

[12] [12] Han Bet al2019 Plasmonic-assisted graphene oxide artificial musclesAdv. Mater.311806386

[13] [13] Phillips J W, Prominski A and Tian B Z 2022 Recent advances in materials and applications for bioelectronic and biorobotic systemsView320200157

[14] [14] Rajabasadi F, Moreno S, Fichna K, Aziz A, Appelhans D, Schmidt O G and Medina-Snchez M 2022 Multifunctional 4D-printed sperm-hybrid microcarriers for assisted reproductionAdv. Mater.342204257

[15] [15] Lee Y W, Kim J K, Bozuyuk U, Dogan N O, Khan M T A, Shiva A, Wild A M and Sitti M 2023 Multifunctional 3D-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo deliveryAdv. Mater.352209812

[16] [16] Jian B C, Li H G, He X N, Wang R, Yang H Y and Ge Q 2024 Two-photon polymerization-based 4D printing and its applicationsInt. J. Extrem. Manuf.6012001

[17] [17] Zhao W, Yue C B, Liu L W, Liu Y J and Leng J S 2023 Research progress of shape memory polymer and 4D printing in biomedical applicationAdv. Healthcare Mater.122201975

[18] [18] Cao M Met al2024 Delivering microrobots in the musculoskeletal systemNano-Micro Lett.16251

[19] [19] Wang Y, Cui H T, Esworthy T, Mei D Q, Wang Y C and Zhang L G 2022 Emerging 4D printing strategies for next-generation tissue regeneration and medical devicesAdv. Mater.342109198

[20] [20] Zhang X X, Chen G P, Wang Y and Zhao Y J 2024 Spatial tumor biopsy with fluorescence PCR microneedle arrayInnovation5100538

[21] [21] Zhang Y Z, Yu H B, Zhang X J, Zheng J C, Wang J G, Guo H J, Qiu Y, Wang X D, Liu L Q and Li W J 2024 A novel multifunctional material for constructing 3D multi-response structures using programmable two-photon laser fabricationAdv. Funct. Mater.342313922

[22] [22] Ma Z C, Fan J H, Wang H S, Chen W D, Yang G Z and Han B 2023 Micro fluidic approaches for microactuators: from fabrication, actuation, to functionalizationSmall192300469

[23] [23] Hiendlmeier L, Zurita F, Vogel J, Del Duca F, Al Boustani G, Peng H, Kopic I, Niki M, Teshima T F and Wolfrum B 2023 4D-printed soft and stretchable self-folding cuff electrodes for small-nerve interfacingAdv. Mater.352210206

[24] [24] Grigoryan Bet al2019 Multivascular networks and functional intravascular topologies within biocompatible hydrogelsScience364458–64

[25] [25] Liu J M, Zhuang R C, Zhou D K, Chang X C and Li L Q 2024 Design and manufacturing of micro/nanorobotsInt. J. Extrem. Manuf.6062006

[26] [26] Ge Q, Li Z Q, Wang Z L, Kowsari K, Zhang W, He X N, Zhou J L and Fang N X 2020 Projection micro stereolithography based 3D printing and its applicationsInt. J. Extrem. Manuf.2022004

[27] [27] Yang X, Shang W F, Lu H J, Liu Y T, Yang L, Tan R, Wu X Y and Shen Y J 2020 An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applicationsSci. Robot.5eabc8191

[28] [28] Sun Q Qet al2019 Surface charge printing for programmed droplet transportNat. Mater.18936–41

[29] [29] Wang F, Liu M J, Liu C, Zhao Q L, Wang T, Wang Z K and Du X M 2022 Light-induced charged slippery surfacesSci. Adv.8eabp9369

[30] [30] Wang Set al2020 Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft roboticsNat. Commun.114359

[31] [31] Han B, Gao Y Y, Zhang Y L, Liu Y Q, Ma Z C, Guo Q, Zhu L, Chen Q D and Sun H B 2020 Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robotsNano Energy71104578

[32] [32] Park J Ket al2019 Remotely triggered assembly of 3D mesostructures through shape-memory effectsAdv. Mater.311905715

[33] [33] Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevicesNature412697–8

[34] [34] Li Fet al2023 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystalsScience3811468–74

[35] [35] Xiong C, Wang C Y, Qin Y, Yu R W, Ji W, Liu A Q, Shen Y C and Xiao L M 2024 3D-printed ultracompact multicore fiber-tip probes for simultaneous measurement of nanoforce and temperatureACS Appl. Mater. Interfaces1630443–52

[36] [36] Zhang Y L, Tian Y, Wang H, Ma Z C, Han D D, Niu L G, Chen Q D and Sun H B 2019 Dual-3D femtosecond laser nanofabrication enables dynamic actuationACS Nano134041–8

[37] [37] Zhang Wet al2021 Structural multi-colour invisible inks with submicron 4D printing of shape memory polymersNat. Commun.12112

[38] [38] Xin Cet al2022 Rapid and multimaterial 4D printing of shape-morphing micromachines for narrow micronetworks traversingSmall182202272

[39] [39] Huang T Y, Huang H W, Jin D D, Chen Q Y, Huang J Y, Zhang L and Duan H L 2020 Four-dimensional micro-building blocksSci. Adv.6eaav8219

[40] [40] Jin Z Wet al2019 Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithmACS Nano13821–9

[41] [41] Chen C T and Gu G X 2020 Generative deep neural networks for inverse materials design using backpropagation and active learningAdv. Sci.71902607

[42] [42] Jin P, Xu L J, Xu G Q, Li J X, Qiu C W and Huang J P 2024 Deep learning-assisted active metamaterials with heat-enhanced thermal transportAdv. Mater.362305791

[43] [43] Sun X H, Yue L, Yu L X, Shao H, Peng X R, Zhou K, Demoly F, Zhao R K and Qi H J 2022 Machine learning-evolutionary algorithm enabled design for 4D-printed active composite structuresAdv. Funct. Mater.322109805

[44] [44] Sun X H, Yue L, Yu L X, Forte C T, Armstrong C D, Zhou K, Demoly F, Zhao R R and Qi H J 2024 Machine learning-enabled forward prediction and inverse design of 4D-printed active platesNat. Commun.155509

[45] [45] Sun X H, Yu L X, Yue L, Zhou K, Demoly F, Zhao R R and Qi H J 2024 Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structuresJ. Mech. Phys. Solids186105561

[46] [46] Jin L Cet al2024 Machine learning driven forward prediction and inverse design for 4D printed hierarchical architecture with arbitrary shapesAppl. Mater. Today40102373

[47] [47] Jin L C, Zhai X Y, Jiang J C, Zhang K and Liao W H 2024 Optimizing stimuli-based 4D printed structures: a paradigm shift in programmable material responseProc. SPIE12949321–32

Tools

Get Citation

Copy Citation Text

Ren Shuaiqi, Zhang Zhiang, He Ruokun, Fan Jiahao, Wang Guangming, Wang Hesheng, Han Bing, Zhang Yong-Lai, Ma Zhuo-Chen. Autonomous inverse encoding guides 4D nanoprinting for highly programmable shape morphing[J]. International Journal of Extreme Manufacturing, 2025, 7(3): 35502

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Sep. 8, 2024

Accepted: Sep. 29, 2025

Published Online: Sep. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ada839

Topics