International Journal of Extreme Manufacturing, Volume. 7, Issue 3, 35502(2025)
Autonomous inverse encoding guides 4D nanoprinting for highly programmable shape morphing
[1] [1] Hippler M, Blasco E, Qu J Y, Tanaka M, Barner-Kowollik C, Wegener M and Bastmeyer M 2019 Controlling the shape of 3D microstructures by temperature and lightNat. Commun.10232
[2] [2] Han B, Zhang Y L, Chen Q D and Sun H B 2018 Carbon-based photothermal actuatorsAdv. Funct. Mater.281802235
[3] [3] Xin C, Ren Z G, Zhang L R, Yang L, Wang D W, Hu Y L, Li J W, Chu J R, Zhang L and Wu D 2023 Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writingNat. Commun.144273
[4] [4] Deng C S, Liu Y C, Fan X H, Jiao B Z, Zhang Z X, Zhang M D, Chen F Y, Gao H, Deng L M and Xiong W 2023 Femtosecond laser 4D printing of light-driven intelligent micromachinesAdv. Funct. Mater.332211473
[5] [5] Kim Y, Yuk H, Zhao R K, Chester S A and Zhao X H 2018 Printing ferromagnetic domains for untethered fast-transforming soft materialsNature558274–9
[6] [6] Xia Net al2022 Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platformAdv. Mater.342109126
[7] [7] Hu Y Let al2020 Botanical-inspired 4D printing of hydrogel at the microscaleAdv. Funct. Mater.301907377
[8] [8] Ma Z C, Zhang Y L, Han B, Hu X Y, Li C H, Chen Q D and Sun H B 2020 Femtosecond laser programmed artificial musculoskeletal systemsNat. Commun.114536
[9] [9] Jin D D, Chen Q Y, Huang T Y, Huang J Y, Zhang L and Duan H L 2020 Four-dimensional direct laser writing of reconfigurable compound micromachinesMater. Today3219–25
[10] [10] Fan J H, Ren S Q, Han B, He R K, Zhang Z A, Han Q Q, Yang X S, Wang H S and Ma Z C 2024 Magnetic fiber robots with multiscale functional structures at the distal endAdv. Funct. Mater.342309424
[11] [11] Wang Q Let al2024 Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted deliverySci. Robot.9eadh1978
[12] [12] Han Bet al2019 Plasmonic-assisted graphene oxide artificial musclesAdv. Mater.311806386
[13] [13] Phillips J W, Prominski A and Tian B Z 2022 Recent advances in materials and applications for bioelectronic and biorobotic systemsView320200157
[14] [14] Rajabasadi F, Moreno S, Fichna K, Aziz A, Appelhans D, Schmidt O G and Medina-Snchez M 2022 Multifunctional 4D-printed sperm-hybrid microcarriers for assisted reproductionAdv. Mater.342204257
[15] [15] Lee Y W, Kim J K, Bozuyuk U, Dogan N O, Khan M T A, Shiva A, Wild A M and Sitti M 2023 Multifunctional 3D-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo deliveryAdv. Mater.352209812
[16] [16] Jian B C, Li H G, He X N, Wang R, Yang H Y and Ge Q 2024 Two-photon polymerization-based 4D printing and its applicationsInt. J. Extrem. Manuf.6012001
[17] [17] Zhao W, Yue C B, Liu L W, Liu Y J and Leng J S 2023 Research progress of shape memory polymer and 4D printing in biomedical applicationAdv. Healthcare Mater.122201975
[18] [18] Cao M Met al2024 Delivering microrobots in the musculoskeletal systemNano-Micro Lett.16251
[19] [19] Wang Y, Cui H T, Esworthy T, Mei D Q, Wang Y C and Zhang L G 2022 Emerging 4D printing strategies for next-generation tissue regeneration and medical devicesAdv. Mater.342109198
[20] [20] Zhang X X, Chen G P, Wang Y and Zhao Y J 2024 Spatial tumor biopsy with fluorescence PCR microneedle arrayInnovation5100538
[21] [21] Zhang Y Z, Yu H B, Zhang X J, Zheng J C, Wang J G, Guo H J, Qiu Y, Wang X D, Liu L Q and Li W J 2024 A novel multifunctional material for constructing 3D multi-response structures using programmable two-photon laser fabricationAdv. Funct. Mater.342313922
[22] [22] Ma Z C, Fan J H, Wang H S, Chen W D, Yang G Z and Han B 2023 Micro fluidic approaches for microactuators: from fabrication, actuation, to functionalizationSmall192300469
[23] [23] Hiendlmeier L, Zurita F, Vogel J, Del Duca F, Al Boustani G, Peng H, Kopic I, Niki M, Teshima T F and Wolfrum B 2023 4D-printed soft and stretchable self-folding cuff electrodes for small-nerve interfacingAdv. Mater.352210206
[24] [24] Grigoryan Bet al2019 Multivascular networks and functional intravascular topologies within biocompatible hydrogelsScience364458–64
[25] [25] Liu J M, Zhuang R C, Zhou D K, Chang X C and Li L Q 2024 Design and manufacturing of micro/nanorobotsInt. J. Extrem. Manuf.6062006
[26] [26] Ge Q, Li Z Q, Wang Z L, Kowsari K, Zhang W, He X N, Zhou J L and Fang N X 2020 Projection micro stereolithography based 3D printing and its applicationsInt. J. Extrem. Manuf.2022004
[27] [27] Yang X, Shang W F, Lu H J, Liu Y T, Yang L, Tan R, Wu X Y and Shen Y J 2020 An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applicationsSci. Robot.5eabc8191
[28] [28] Sun Q Qet al2019 Surface charge printing for programmed droplet transportNat. Mater.18936–41
[29] [29] Wang F, Liu M J, Liu C, Zhao Q L, Wang T, Wang Z K and Du X M 2022 Light-induced charged slippery surfacesSci. Adv.8eabp9369
[30] [30] Wang Set al2020 Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft roboticsNat. Commun.114359
[31] [31] Han B, Gao Y Y, Zhang Y L, Liu Y Q, Ma Z C, Guo Q, Zhu L, Chen Q D and Sun H B 2020 Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robotsNano Energy71104578
[32] [32] Park J Ket al2019 Remotely triggered assembly of 3D mesostructures through shape-memory effectsAdv. Mater.311905715
[33] [33] Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevicesNature412697–8
[34] [34] Li Fet al2023 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystalsScience3811468–74
[35] [35] Xiong C, Wang C Y, Qin Y, Yu R W, Ji W, Liu A Q, Shen Y C and Xiao L M 2024 3D-printed ultracompact multicore fiber-tip probes for simultaneous measurement of nanoforce and temperatureACS Appl. Mater. Interfaces1630443–52
[36] [36] Zhang Y L, Tian Y, Wang H, Ma Z C, Han D D, Niu L G, Chen Q D and Sun H B 2019 Dual-3D femtosecond laser nanofabrication enables dynamic actuationACS Nano134041–8
[37] [37] Zhang Wet al2021 Structural multi-colour invisible inks with submicron 4D printing of shape memory polymersNat. Commun.12112
[38] [38] Xin Cet al2022 Rapid and multimaterial 4D printing of shape-morphing micromachines for narrow micronetworks traversingSmall182202272
[39] [39] Huang T Y, Huang H W, Jin D D, Chen Q Y, Huang J Y, Zhang L and Duan H L 2020 Four-dimensional micro-building blocksSci. Adv.6eaav8219
[40] [40] Jin Z Wet al2019 Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithmACS Nano13821–9
[41] [41] Chen C T and Gu G X 2020 Generative deep neural networks for inverse materials design using backpropagation and active learningAdv. Sci.71902607
[42] [42] Jin P, Xu L J, Xu G Q, Li J X, Qiu C W and Huang J P 2024 Deep learning-assisted active metamaterials with heat-enhanced thermal transportAdv. Mater.362305791
[43] [43] Sun X H, Yue L, Yu L X, Shao H, Peng X R, Zhou K, Demoly F, Zhao R K and Qi H J 2022 Machine learning-evolutionary algorithm enabled design for 4D-printed active composite structuresAdv. Funct. Mater.322109805
[44] [44] Sun X H, Yue L, Yu L X, Forte C T, Armstrong C D, Zhou K, Demoly F, Zhao R R and Qi H J 2024 Machine learning-enabled forward prediction and inverse design of 4D-printed active platesNat. Commun.155509
[45] [45] Sun X H, Yu L X, Yue L, Zhou K, Demoly F, Zhao R R and Qi H J 2024 Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structuresJ. Mech. Phys. Solids186105561
[46] [46] Jin L Cet al2024 Machine learning driven forward prediction and inverse design for 4D printed hierarchical architecture with arbitrary shapesAppl. Mater. Today40102373
[47] [47] Jin L C, Zhai X Y, Jiang J C, Zhang K and Liao W H 2024 Optimizing stimuli-based 4D printed structures: a paradigm shift in programmable material responseProc. SPIE12949321–32
Get Citation
Copy Citation Text
Ren Shuaiqi, Zhang Zhiang, He Ruokun, Fan Jiahao, Wang Guangming, Wang Hesheng, Han Bing, Zhang Yong-Lai, Ma Zhuo-Chen. Autonomous inverse encoding guides 4D nanoprinting for highly programmable shape morphing[J]. International Journal of Extreme Manufacturing, 2025, 7(3): 35502
Category:
Received: Sep. 8, 2024
Accepted: Sep. 29, 2025
Published Online: Sep. 29, 2025
The Author Email: