Laser & Optoelectronics Progress, Volume. 54, Issue 2, 21702(2017)

A Tumor Segmentation Method of Improved Chan-Vese Model for Liver Cancer Ablation Computed Tomography Image

Xie Zhinan*, Zheng Dong, Chen Jiayao, and Hong Guobin
Author Affiliations
  • [in Chinese]
  • show less
    References(15)

    [1] [1] Coupal T M, Mallinson P I, Munk P L, et al. CT-guided percutaneous cryoablation for osteoid osteoma: initial experience in adults[J]. American Journal of Roentgenology, 2014, 202(5): 1136-1139.

    [2] [2] Goryawala M, Guillen M R, Cabrerizo M, et al. A 3-D liver segmentation method with parallel computing for selective internal radiation therapy[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(1): 62-69.

    [3] [3] Mharib A M, Ramli A R, Mashohor S, et al. Survey on liver CT image segmentation methods[J]. Artificial Intelligence Review. 2012, 37(2): 83-95.

    [5] [5] Foruzan A H, Aghaeizadeh Z R, Hori M, et al. Liver segmentation by intensity analysis and anatomical information in multi-slice CT images[J]. International Journal of Computer Assisted Radiology & Surgery, 2009, 4(3): 287-297.

    [6] [6] Lee J, Kim N, Lee H, et al. Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images[J]. Computer Methods & Programs in Biomedicine, 2007, 92(88): 26-38.

    [7] [7] Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1): 61-79.

    [8] [8] Vese L A, Chan T F. A multiphase level set framework for image segmentation using the mumford and shah model[J]. International Journal of Computer Vision, 2002, 50(3): 271-293.

    [9] [9] Li C, Xu C, Gui C, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254.

    [10] [10] Li C M, Huang R, Ding Z H, et al. A level set method for image segmentation in the presence of intensity in homogeneities with application to MRI[J]. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016.

    [11] [11] Gong Wenbiao, Gu Guohua, Qian Weixian, et al. Stereo matching algorithm based on image segmentation and adaptive support weight[J]. Acta Optica Sinica, 2015, 35(s2): s210002.

    [12] [12] Lankton S, Tannenbaum A. Localizing region-based active contours[J]. IEEE Transactions on Image Processing, 2008, 17(11): 2029-2039.

    [13] [13] Li C Y, Wang X Y, Eberl S, et al. A likelihood and local constraint level set model for liver tumor segmentation from CT volumes[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2967-2975.

    [14] [14] Li Junwei, Chen Xiaodong, Jia Zhongwei, et al. A coronary artery lumen segmentation algorithm based on ray casting[J]. Chinese J Lasers, 2015, 42(8): 0804002.

    CLP Journals

    [1] Xu Junyang, Wang Huiqin, Wu Meng, Jing Yali. A Crack Detection Algorithm Based on Editing Distance in Pictorial Carved Stone[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81006

    Tools

    Get Citation

    Copy Citation Text

    Xie Zhinan, Zheng Dong, Chen Jiayao, Hong Guobin. A Tumor Segmentation Method of Improved Chan-Vese Model for Liver Cancer Ablation Computed Tomography Image[J]. Laser & Optoelectronics Progress, 2017, 54(2): 21702

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Sep. 7, 2016

    Accepted: --

    Published Online: Feb. 10, 2017

    The Author Email: Xie Zhinan (haizhu618@139.com)

    DOI:10.3788/lop54.021702

    Topics